| |||
Brainstem
Kinds of Brainstem Terms modified by Brainstem Selected AbstractsMorphologic and Neurochemical Abnormalities in the Auditory Brainstem of the Genetically Epilepsy-prone Hamster (GPG/Vall)EPILEPSIA, Issue 7 2005Verónica Fuentes-Santamaría Summary:,Purpose: This study was performed to evaluate whether audiogenic seizures, in a strain of genetically epilepsy-prone hamsters (GPG/Vall), might be associated with morphologic alterations in the cochlea and auditory brainstem. In addition, we used parvalbumin as a marker of neurons with high levels of activity to examine changes within neurons. Methods: Cochlear histology as well as parvalbumin immunohistochemistry were performed to assess possible abnormalities in the GPG/Vall hamster. Densitometry also was used to quantify levels of parvalbumin immunostaining within neurons and fibers in auditory nuclei. Results: In the present study, missing outer hair cells and spiral ganglion cells were observed in the GPG/Vall hamster. In addition, an increase was noted in the size of spiral ganglion cells as well as a decrease in the volume and cell size of the cochlear nucleus (CN), the superior olivary complex nuclei (SOC), and the nuclei of the lateral lemniscus (LL) and the inferior colliculus (IC). These alterations were accompanied by an increase in levels of parvalbumin immunostaining within CN, SOC, and LL neurons, as well as within parvalbumin-immunostained fibers in the CN and IC. Conclusions: These data are consistent with a cascade of atrophic changes starting in the cochlea and extending along the auditory brainstem in an animal model of inherited epilepsy. Our data also show an upregulation in parvalbumin immunostaining in the neuropil of the IC that may reflect a protective mechanism to prevent cell death in the afferent sources to this nucleus. [source] Change of Excitability in Brainstem and Cortical Visual Processing in Migraine Exhibiting AllodyniaHEADACHE, Issue 10 2006Koichi Shibata MD Background.,Clinical and neurophysiological manifestations of information processing associated with central sensitization are little known. Allodynic migraine (AM) can be caused by the sensitization of trigeminal neuron, but no study has reported on AM between attacks using blink reflex (BR) and pattern-reversal visual evoked potentials (PVEPs). Objective.,We explored the characteristics of AM between attacks associated with central sensitization using BR and PVEP. Methods.,We recruited 13 patients with interictal AM and 15 patients with nonallodynic migraine (NA), and 30 healthy subjects (HS). BRs were obtained using paired pulses delivered at the interstimulus interval (ISI) of 150, 300, and 500 ms. The ratio of the area in the R2 of the second to R2 of the first shock was measured for each ISI. PVEP were recorded with 2 spatial frequencies (0.5 and 4.0 cpd) and 2 low and high contrasts (29% and 98%, respectively). Amplitudes of P100 were measured. Results.,For BR, there were no significant differences in the ratio of the area of the R2 between the sides of stimulation, and the sides of headache. AM patients had less suppression of the R2 at the ISI of 150 and 300 ms when compared with the NA patients and HS. For PVEP, at 0.5, there were significant differences of amplitude between AM patients and HS, and between NA patients and HS in low and high contrast. At 4.0 cpd, there were significant differences of amplitude between AM patients and HS in low contrast, and between AM patients and HS, and NA patients and HS in high contrast. In AM patients, there was a significant difference of amplitude ratio between 0.5 and 4.0 cpd. Conclusions.,Our BR and PVEP study showed that migraine patients exhibiting allodynia may show central sensitization of brainstem trigeminal neuron and have contrast modulating dysfunction during the cortical visual processing of striate and extrastriate on visual cortex in-between attacks. [source] Venous Infarction of Brainstem and CerebellumJOURNAL OF NEUROIMAGING, Issue 4 2001Yakup Krespi MD ABSTRACT The authors describe 2 cases of posterior fossa venous infarction. A 56-year-old woman with essential thrombocytemia presented with fluctuating complaints of headache, nausea, vomiting, left-sided numbness-weakness, and dizziness and became progressively stuporous. Cranial magnetic resonance imaging (MRI) showed bilateral parasagittal frontoparietal and left cerebellar contrast-enhancing hemorrhagic lesions. On magnetic resonance venography, the left transverse and sigmoid sinuses were occluded. The second patient, a 39-year-old woman, presented with acute onset of diplopia, numbness of the tongue, vertigo, and right-sided weakness following a gestational age stillbirth. MRI revealed lesions in the right half of midbrain and pons and in the superior part of the right cerebellar hemisphere. Digital subtraction angiography showed right transverse and sigmoid sinus occlusion. The authors suggest that one should investigate the possibility of venous infarction in the presence of posterior fossa lesions that are often hemorrhagic and are not within any arterial territory distribution but respect a known venous drainage pattern. Recognition of the observed clinical and neuroimaging features can lead to earlier diagnosis and, potentially, more effective management. [source] Click and Low-, Middle-, and High-Frequency Toneburst Stimulation of the Canine CochleaJOURNAL OF VETERINARY INTERNAL MEDICINE, Issue 3 2002G. Ter Haar A method was developed to deliver tonebursts ranging in frequency from 1 to 32 kHz for frequency-specific assessment of the canine cochlea. Brainstem auditory-evoked responses (early latency responses, 0,10 ms) to a click (CS) and to 1-, 2-, 4-, 8-, 12-, 16-, 24-, and 32-kHz toneburst stimulations (TS) were compared at 80-dB sound pressure level stimulus (SPL) intensity in 10 adult dogs. All stimulations yielded a 5,7 positive wave pattern, with the exception of the 1-kHz TS, which evoked a frequency-following response (FFR). Thresholds were lowest for the CS and the 12- and 16-kHz TS. All individual peak latencies for TS were significantly (P, .05) longer than for CS. Peak I latencies were significantly (P,.05) shorter for the 12- and 16-kHz TS than for the other TS. Interpeak latencies I-V were significantly (P, .05) longer for the 4- to 32-kHz TS than for CS. Differences in interpeak latencies I,III were not significant. Amplitudes of waves I and V were significantly (P, .05) lower for TS than for CS, except for higher wave V amplitude (P, .05) at 2- and 32-kHz TS. Peak I-V amplitude ratios were significantly (P, .05) higher for the 2-, 4-, 16-, 24-, and 32-kHz TS and lower for the 8- and 12-kHz TS, compared to CS. We conclude that reproducible information on frequency specificity of the canine cochlea can be obtained by TS. This report provides a normative database for parameters needed to evaluate frequency-specific hearing loss in dogs. [source] Morphological Characteristics of C1 and C2 Adrenergic Neurone Groups in Marmoset Monkey Brainstem by using Antibody against Phenylethanolamine-N-methyltransferaseANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 6 2002Y.-G. Jeong Summary This work describes a mapping study of phenylethanolamine-N-methyltransferase (PNMT) immunoreactive neurones and fibres in the medulla oblongata of the marmoset monkey, Callithrix jacchus. Two groups of PNMT-immunoreactive neurones were found in the marmoset monkey medulla oblongata: a ventrolateral (C1 group) and a dorsomedial PNMT-immunoreactive cells group (C2 group). The PNMT-immunoreactive cells in the ventrolateral group C1 were found to be located around the lateral reticular nucleus. The PNMT-immunoreactive somata within the ventrolateral medulla are round to oval, and mostly multipolar with branched processes. In the dorsomedial group C2, PNMT-immunoreactive cell bodies appeared near the obex. The majority of the dorsomedial PNMT-immunoreactive neurones were observed in the nucleus tractus solitarius; although some were present in the dorsal motor nucleus of the vagus. The PNMT-immunoreactive somata in the dorsomedial medulla were small and round or ovoid. These results provide information upon the adrenergic system in the medulla oblongata of a species that presents a useful model of a small primate brain, the marmoset monkey. [source] Brain involvement in muscular dystrophies with defective dystroglycan glycosylation,ANNALS OF NEUROLOGY, Issue 5 2008Emma Clement MBChB Objective To assess the range and severity of brain involvement, as assessed by magnetic resonance imaging, in 27 patients with mutations in POMT1 (4), POMT2 (9), POMGnT1 (7), Fukutin (4), or LARGE (3), responsible for muscular dystrophies with abnormal glycosylation of dystroglycan (dystroglycanopathies). Methods Blinded review of magnetic resonance imaging brain scans from 27 patients with mutations in 1 of these 5 genes. Results Brain magnetic resonance images were normal in 3 of 27 patients; in another 5, only nonspecific abnormalities (ventricular dilatation, periventricular white matter abnormalities, or both) were seen. The remaining 19 patients had a spectrum of structural defects, ranging from complete lissencephaly in patients with Walker,Warburg syndrome to isolated cerebellar involvement. Cerebellar cysts and/or dysplasia and hypoplasia were the predominant features in four patients. Polymicrogyria (11/27) was more severe in the frontoparietal regions in 6, and had an occipitofrontal gradient in 2. Pontine clefts, with an unusual appearance to the corticospinal tracts, were seen in five patients with a muscle-eye-brain,like phenotype, three patients with POMGnT1, one with LARGE, and one with POMT2 mutations. Prominent cerebellar cysts were always seen with POMGnT1 mutations, but rarely seen in POMT1 and POMT2. Brainstem and pontine abnormalities were common in patients with POMT2, POMGnT1, and LARGE mutations. Interpretation Our results expand the spectrum of brain involvement associated with mutations in LARGE, POMGnT1, POMT1, and POMT2. Pontine clefts were visible in some dystroglycanopathy patients. Infratentorial structures were often affected in isolation, highlighting their susceptibility to involvement in these conditions. Ann Neurol 2008;64:573,582 [source] Ototoxicity in Rats Exposed to Ortho-, Meta- and Para-Xylene Vapours for 13 WeeksBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 1 2001François Gagnaire Brainstem auditory-evoked responses were used to determine auditory thresholds at different frequencies. Among the three isomers studied, only para-xylene produced moderate to severe ototoxicity in rats exposed at 900 and 1800 p.p.m. Increased auditory thresholds were observed at 2, 4, 8 and 16 kHz in rats exposed to 1800 p.p.m. para-xylene. The auditory threshold shifts (35 to 38 dB) did not reverse after 8 weeks of recovery. Moderate and severe losses of outer hair cells of the organ of Corti occurred in animals exposed to 900 and 1800 p.p.m. para-xylene respectively. Thus, the no observed effect level of para-xylene was 450 p.p.m. based on the loss of outer hair cells observed by light and electron microscopy. [source] Brain magnetic resonance imaging abnormalities in neuromyelitis opticaACTA NEUROLOGICA SCANDINAVICA, Issue 4 2008Y. Li Objective,,, Brain abnormalities in neuromyelitis optica (NMO) attracted much attention. Our study was to identify the brain magnetic resonance imaging (MRI) abnormalities in Chinese NMO patients. Methods,,, Patients who fulfilled the latest diagnostic criteria of NMO proposed by Wingerchuk et al. [Neurology 66 (2006) 1485] and whose brain MRI did not meet the multiple sclerosis (MS) criteria of McDonald et al. [Ann Neurol 50 (2001) 121] were selected to perform MRI scanning of the brain, spinal cord and optic nerves. Results,,, Twenty-eight of 33 patients (84.8%) had abnormal MRI findings. Twenty-two patients (66.7%) presented with well-defined brain parenchymal lesions and the other six patients (18.2%) with macroscopic symmetrical diffuse hyperintensities in deep white matter. Fifteen of 22 patients had more than one lesion (,2 lesions) and the other seven patients had single lesion. In the supratentorium, most lesions were punctate or small round dot and non-specific in juxtacortical, subcortical and deep white matter regions, a few were patchy atypical confluent lesions. Brainstem was easily involved (14/33, 42.4%) especially in medulla (7/33, 21.2%). Conclusions,,, This study demonstrates the characteristics of brain MRI abnormalities in Chinese NMO patients, which are helpful to the revision of diagnostic criteria for NMO. [source] ORIGINAL ARTICLE: Sparing of the hippocampus and limbic circuit during whole brain radiation therapy: A dosimetric study using helical tomotherapyJOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY, Issue 4 2010JC Marsh Abstract Introduction:, The study aims to assess the feasibility of dosimetrically sparing the limbic circuit during whole brain radiation therapy (WBRT) and prophylactic cranial irradiation (PCI). Methods and Materials:, We contoured the brain/brainstem on fused MRI and CT as the target volume (PTV) in 11 patients, excluding the hippocampus and the rest of the limbic circuit, which were considered organs at risk (OARs). PCI and WBRT helical tomotherapy plans were prepared for each patient with a 1.0-cm field width, pitch = 0.285, initial modulation factor = 2.5. We attempted to spare the hippocampus and the rest of the limbic circuit while treating the rest of the brain to 30 Gy in 15 fractions (PCI) or 35 Gy in 14 fractions (WBRT) with V100 , 95%. The quality of the plans was assessed by calculating mean dose and equivalent uniform dose (EUD) for OARs and the % volume of the PTV receiving the prescribed dose, V100. Results:, In the PCI plans, mean doses/EUD were: hippocampus 12.5 Gy/14.23 Gy, rest of limbic circuit 17.0 Gy/19.02 Gy. In the WBRT plans, mean doses/EUD were: hippocampus 14.3 Gy/16.07 Gy, rest of limbic circuit 17.9 Gy/20.74 Gy. The mean V100 for the rest of the brain (PTV) were 94.7% (PCI) and 95.1% (WBRT). Mean PCI and WBRT treatment times were essentially identical (mean 15.23 min, range 14.27,17.5). Conclusions:, It is dosimetrically feasible to spare the hippocampus and the rest of the limbic circuit using helical tomotherapy while treating the rest of the brain to full dose. [source] Hyperthermia in utero due to maternal influenza is an environmental risk factor for schizophreniaCONGENITAL ANOMALIES, Issue 3 2007Marshall J. Edwards ABSTRACT A hypothesis is presented that the association between maternal influenza and other causes of fever during the second trimester of pregnancy and the subsequent development of schizophrenia in the child is due to the damage caused by hyperthermia to the developing amygdalohippocampal complex and associated structures in the fetal brain. Hyperthermia is a known cause of congenital defects of the central nervous system and other organs after sufficiently severe exposures during early organogenesis. The pathogenic mechanisms include death of actively dividing neuroblasts, disruption of cell migration and arborization and vascular damage. In experimental studies, hyperthermia during later stages of central nervous system development also caused damage to the developing brainstem that was associated with functional defects. This damage usually results in hypoplasia of the parts undergoing active development at the time of exposure. Recent studies have shown no evidence of direct invasion of the fetus by the influenza virus. Factors that might interact with hyperthermia include familial liability to schizophrenia, season of birth, maternal nutrition, severe stress and medications used to alleviate the symptoms of fevers. The time of the development of the fetal amygdalohippocampal complex and the changes found in its structure and associated areas of the brain are compatible with the known effects of hyperthermia. [source] Review of animal models for autism: implication of thyroid hormoneCONGENITAL ANOMALIES, Issue 1 2006Miyuki Sadamatsu ABSTRACT,, Autism is a behaviorally defined disorder associated with characteristic impairments in social interactions and communication, as well as restricted and repetitive behaviors and interest. Its prevalence was once thought to be 2/10 000, but recently several large autism prevalence reviews revealed that the rate of occurrence was roughly 30/10 000. While it has been considered a developmental disorder, little is certain about its etiology. Neuroanatomical studies at the histological level in the brains of autistic patients provide many arguments in the etiology of autism. Results from postmortem and imaging studies have implicated many major structures of the brain including the limbic system, cerebellum, corpus callosum, basal ganglia and brainstem. There is no single biological or clinical marker for autism. While several promising candidate genes have been presented, the critical loci are yet unknown. Environmental influences such as rubella virus, valproic acid, and thalidomide exposure during pregnancy are also considered important, as concordance in monozygotic twins is less than 100% and the phenotypic expression of the disorder varies widely. It is thus hypothesized that non-genetic mechanisms contribute to the onset of autistic syndrome. In light of these ambiguities, hope is held that an animal model of autism may help elucidate matters. In this article, we overview most of the currently available animal models for autism, and propose the rat with mild and transient neonatal hypothyroidism as a novel model for autism. [source] Cranial expression of class 3 secreted semaphorins and their neuropilin receptorsDEVELOPMENTAL DYNAMICS, Issue 4 2003John K. Chilton Abstract The semaphorin family of chemorepellents and their receptors the neuropilins are implicated in a variety of cellular processes, including axon guidance and cell migration. Semaphorins may bind more than one neuropilin or a heterodimer of both, thus a detailed knowledge of their expression patterns may reveal possible cases of redundancy or mutual antagonism. To assess their involvement in cranial development, we cloned fragments of the chick orthologues of Sema3B and Sema3F. We then carried out mRNA in situ hybridisation of all six class 3 semaphorins and both neuropilins in the embryonic chick head. We present evidence for spatiotemporal regulation of these molecules in the brainstem and developing head, including the eye, ear, and branchial arches. These expression patterns provide a basis for functional analysis of semaphorins and neuropilins in the development of axon projections and the morphogenesis of cranial structures. Developmental Dynamics 228:726,733, 2003. © 2003 Wiley-Liss, Inc. [source] A cognitive and affective pattern in posterior fossa strokes in children: a case seriesDEVELOPMENTAL MEDICINE & CHILD NEUROLOGY, Issue 7 2010MANOELLE KOSSOROTOFF Aim, Posterior fossa strokes account for about 10% of ischaemic strokes in children. Although motor and dysautonomic symptoms are common, to our knowledge cognitive and affective deficits have not been described in the paediatric literature. Our aim, therefore, was to describe these symptoms and deficits. Method, In a retrospective study, we included all cases of posterior fossa strokes in children occurring at a single centre between 2005 and 2007, and investigated cognitive and affective deficits. Results, Five males aged 3 to 14 years met the inclusion criteria. They all presented very early with mood disturbances: outbursts of laughter and/or crying and alternating agitation or prostration that disappeared spontaneously within a few days. Persistent cognitive deficits were also diagnosed in all five: initial mutism, then anomia, followed by comprehension deficiency and deficiencies of planning ability, visual,spatial organization, and attention. Despite early and intensive rehabilitation, recovery from these cognitive deficits was slow and sometimes incomplete, and on follow-up they proved to be more disabling than the motor symptoms. Interpretation, These findings are similar to the cerebellar cognitive affective syndrome described in adults, and quite similar to the language and affective deficits observed in children after surgery for posterior fossa tumour. This is consistent with the role of the cerebellum and brainstem in affective and cognitive processes from early development. [source] Smooth ocular pursuit in Chiari type II malformationDEVELOPMENTAL MEDICINE & CHILD NEUROLOGY, Issue 4 2007Michael S Salman MRCP PhD Chiari type II malformation (CII) is a congenital anomaly of the cerebellum and brainstem, both important structures for processing smooth ocular pursuit. CII is associated with myelomeningocele and hydrocephalus. We investigated the effects of CII on smooth pursuit (SP) eye movements, and determined the effects of spinal lesion level, number of shunt revisions, nystagmus, and brain dysmorphology on SP. SP was recorded using an infrared eye tracker in 21 participants with CII (11 males, 10 females; age range 8-19y, mean 14y 3mo [SD 3y 2mo]). Thirty-eight healthy children (21 males, 17 females) constituted the comparison group. Participants followed a visual target moving sinusoidally at ± 10° amplitude, horizontally and vertically at 0.25 or 0.5Hz. SP gains, the ratio of eye to target velocities, were abnormal in the CII group with nystagmus (n= 8). The number of shunt revisions (range 0-10), brain dysmorphology, or spinal lesion level (n= 15 for lower and n= 6 for upper spinal lesion level) did not correlate with SP gains. SP is impaired in children with CII and nystagmus. Abnormal pursuit might be related to the CII dysgenesis or to effects of hydrocephalus. The lack of effect of shunt revisions and abnormal tracking in participants with nystagmus provide evidence that it is related primarily to the cerebellar and brainstem malformation. [source] Neuromotor development in nocturnal enuresisDEVELOPMENTAL MEDICINE & CHILD NEUROLOGY, Issue 9 2006Alexander von Gontard MD PhD In children with nocturnal enuresis, a higher rate of minor neurological dysfunction has been found. The aim of this study was to assess timed performance (a measure of motor performance speed) and associated movements using a standardized and reliable instrument. The motor function of 37 children with nocturnal enuresis (27 males, 10 females; mean age 10y 7mo [SD 1y 10mo]; age range 8y-14y 8mo) and 40 comparison children without enuresis (17 males, 23 females; mean age 10y 7mo [SD 1y 6mo]; age range 8y-14y 8mo) was assessed using the Zurich Neuromotor Assessment. Children with nocturnal enuresis showed a slower motor performance than comparison children, particularly for repetitive hand and finger movements. This study provides evidence for a maturational deficit in motor performance in children with nocturnal enuresis. In addition to a maturational deficit of the brainstem, it is proposed that there is a possible maturational deficit of the motor cortex circuitry and related cortical areas in children with nocturnal enuresis. [source] Tonotopic gradients of Eph family proteins in the chick nucleus laminaris during synaptogenesisDEVELOPMENTAL NEUROBIOLOGY, Issue 1 2004Abigail L. Person Abstract Topographically precise projections are established early in neural development. One such topographically organized network is the auditory brainstem. In the chick, the auditory nerve transmits auditory information from the cochlea to nucleus magnocellularis (NM). NM in turn innervates nucleus laminaris (NL) bilaterally. These projections preserve the tonotopy established at the level of the cochlea. We have begun to examine the expression of Eph family proteins during the formation of these connections. Optical density measurements were used to describe gradients of Eph proteins along the tonotopic axis of NL in the neuropil, the somata, and the NM axons innervating NL at embryonic day 10, when synaptic connections from NM to NL are established. At E10,11, NL dorsal neuropil expresses EphA4 at a higher concentration in regions encoding high frequency sounds, decreasing in concentration monotonically toward the low frequency (caudolateral) end. In the somata, both EphA4 and ephrin-B2 are concentrated at the high frequency end of the nucleus. These tonotopic gradients disappear between E13 and E15, and expression of these molecules is completely downregulated by hatching. The E10,11 patterns run counter to an apparent gradient in dendrite density, as indicated by microtubule associated protein 2 (MAP2) immunolabeling. Finally, ephrin-B2 is also expressed in a gradient in tissue ventral to the NL neuropil. Our findings thus suggest a possible conserved mechanism for establishing topographic projections in diverse sensory systems. These results of this study provide a basis for the functional examination of the role of Eph proteins in the formation of tonotopic maps in the brainstem. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 28,39, 2004 [source] Developmental changes in the modulation of respiratory rhythm generation by extracellular K+ in the isolated bullfrog brainstemDEVELOPMENTAL NEUROBIOLOGY, Issue 3 2003Rachel E. Winmill Abstract This study tested the hypothesis that voltage-dependent, respiratory-related activity in vitro, inferred from changes in [K+]o, changes during development in the amphibian brainstem. Respiratory-related neural activity was recorded from cranial nerve roots in isolated brainstem,spinal cord preparations from 7 premetamorphic tadpoles and 10 adults. Changes in fictive gill/lung activity in tadpoles and buccal/lung activity in adults were examined during superfusion with artificial CSF (aCSF) with [K+]o ranging from 1 to 12 mM (4 mM control). In tadpoles, both fictive gill burst frequency (fgill) and lung burst frequency (flung) were significantly dependent upon [K+]o (r2 > 0.75; p < 0.001) from 1 to 10 mM K+, and there was a strong correlation between fgill and flung (r2 = 0.65; p < 0.001). When [K+]o was raised to 12 mM, there was a reversible abolition of fictive breathing. In adults, fictive buccal frequency (fbuccal), was significantly dependent on [K+]o (r2 = 0.47; p < 0.001), but [K+]o had no effect on flung (p > 0.2), and there was no significant correlation between fbuccal and flung. These data suggest that the neural networks driving gill and lung burst activity in tadpoles may be strongly voltage modulated. In adults, buccal activity, the proposed remnant of gill ventilation in adults, also appears to be voltage dependent, but is not correlated with lung burst activity. These results suggest that lung burst activity in amphibians may shift from a "voltage-dependent" state to a "voltage-independent" state during development. This is consistent with the hypothesis that the fundamental mechanisms generating respiratory rhythm in the amphibian brainstem change during development. We hypothesize that lung respiratory rhythm generation in amphibians undergoes a developmental change from a pacemaker to network-driven process. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 278,287, 2003 [source] Localization of KCNC1 (Kv3.1) potassium channel subunits in the avian auditory nucleus magnocellularis and nucleus laminaris during developmentDEVELOPMENTAL NEUROBIOLOGY, Issue 2 2003Suchitra Parameshwaran-Iyer Abstract The KCNC1 (previously Kv3.1) potassium channel, a delayed rectifier with a high threshold of activation, is highly expressed in the time coding nuclei of the adult chicken and barn owl auditory brainstem. The proposed role of KCNC1 currents in auditory neurons is to reduce the width of the action potential and enable neurons to transmit high frequency temporal information with little jitter. Because developmental changes in potassium currents are critical for the maturation of the shape of the action potential, we used immunohistochemical methods to examine the developmental expression of KCNC1 subunits in the avian auditory brainstem. The KCNC1 gene gives rise to two splice variants, a longer KCNC1b and a shorter KCNC1a that differ at the carboxy termini. Two antibodies were used: an antibody to the N-terminus that does not distinguish between KCNC1a and b isoforms, denoted as panKCNC1, and another antibody that specifically recognizes the C terminus of KCNC1b. A comparison of the staining patterns observed with the panKCNC1 and the KCNC1b specific antibodies suggests that KCNC1a and KCNC1b splice variants are differentially regulated during development. Although panKCNC1 immunoreactivity is observed from the earliest time examined in the chicken (E10), a subcellular redistribution of the immunoproduct was apparent over the course of development. KCNC1b specific staining has a late onset with immunostaining first appearing in the regions that map high frequencies in nucleus magnocellularis (NM) and nucleus laminaris (NL). The expression of KCNC1b protein begins around E14 in the chicken and after E21 in the barn owl, relatively late during ontogeny and at the time that synaptic connections mature morphologically and functionally. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 165,178, 2003 [source] Domperidone interferes with conditioned disgust reactions but not taste avoidance evoked by a LiCl-paired taste in infant ratsDEVELOPMENTAL PSYCHOBIOLOGY, Issue 4 2008Ricardo Marcos Pautassi Abstract Rats exhibit taste avoidance and conditioned disgust reactions when stimulated with a tastant paired with lithium chloride (LiCl). Lithium-mediated activation of chemoreceptor nuclei at the brainstem appears to determine the acquisition of conditioned taste aversion (CTA) in adult rodents. Domperidone (DOM), an anti-emetic drug that does not cross the blood,brain barrier, was employed to analyze mechanisms underlying LiCl-mediated CTA in infant rats. On postnatal day 13 animals were given DOM followed by a pairing between intraoral saccharin and LiCl. Saccharin consumption at testing was lower in lithium-treated pups than in controls. DOM did not interfere with this LiCl-mediated taste avoidance but significantly decreased LiCl-mediated disgust reactions (head-shaking and wall climbing). Activation of the emetic system of the brainstem does not seem necessary for the acquisition of LiCl-mediated conditioned taste avoidance. Yet, these centers seem to be involved in the palatability shift resulting from taste-LiCl pairings. These results indicate an early dissociation between conditioned disgust reactions and conditioned taste avoidance. © 2008 Wiley Periodicals, Inc. Dev Psychobiol 50: 343,352, 2008. [source] Model of cryptogenic infantile spasms after prenatal corticosteroid primingEPILEPSIA, Issue 2010Libor Velí Summary Infantile spasms (IS) is a devastating epilepsy syndrome of childhood. IS occurs in 3,12-month-old infants and is characterized by spasms, interictal electroencephalography (EEG) hypsarrhythmia, and profound mental retardation. Hormonal therapy [adrenocorticotropic hormone (ACTH), corticosteroids] is frequently used, but its efficacy is tainted by severe side effects. For research of novel therapies, a validated animal model of IS is required. We propose the model of spastic seizures triggered by N -methyl- d -aspartate (NMDA) in infant rats prenatally exposed to betamethasone. The spasms have remarkable similarity to human IS, including motor flexion spasms, ictal EEG electrodecrement, and responsiveness to ACTH. Interestingly, the spasms do not involve the hippocampus. Autoradiographic metabolic mapping as well as tagging of the areas of neuronal excitation with c-fos indicates a strong involvement of hypothalamic structures such as the arcuate nucleus, which has significant bilateral connections with other hypothalamic nuclei as well as with the brainstem. [source] Monoamine variability in the chronic model of atypical absence seizuresEPILEPSIA, Issue 4 2009Eduard Bercovici Summary Purpose:, We studied the variability of the slow-spike-and-wave discharges (SSWDs) derived from AY-9944 (AY) treatment during brain development of Long-Evans hooded (LEh) rats. Methods:, Although all LEh rats received the standard dose of AY (7.5 mg/kg), we have observed an intersubject variability of the total SSWD duration at postnatal day (P) 55. Therefore, we set out to investigate the underlying brain levels of norepinephrine (NE), dopamine (DA), and serotonin (5-HT) and its metabolite (5-HIAA), as determined by high-performance liquid chromatography (HPLC) analyses from four different brain regions: thalamus (Th), frontoparietal cortex (Cx), hippocampus (Hp), and brainstem (Bs). Results:, All brains were obtained after two baseline electrocorticographic (ECoG) recordings with characteristic chronic, recurrent, bilaterally synchronous 4,6 Hz SSWD, at P 55 (336.25 ± 97.23 s/h) and P60 (494.50 ± 150.36 s) (r = 0.951, r2 = 0.904, p < 0.005, Pearson product). The thalamic NE levels and the brainstem NE, DA, and 5HT levels were all significantly correlated with baseline SSWD duration at P55 and P60 (p < 0.01, Pearson product). Conclusion:, Our data indicate that brain monoamine levels may determine the intersubject variability of SSWD duration in AY rats with chronic atypical absence seizures. [source] Morphologic and Neurochemical Abnormalities in the Auditory Brainstem of the Genetically Epilepsy-prone Hamster (GPG/Vall)EPILEPSIA, Issue 7 2005Verónica Fuentes-Santamaría Summary:,Purpose: This study was performed to evaluate whether audiogenic seizures, in a strain of genetically epilepsy-prone hamsters (GPG/Vall), might be associated with morphologic alterations in the cochlea and auditory brainstem. In addition, we used parvalbumin as a marker of neurons with high levels of activity to examine changes within neurons. Methods: Cochlear histology as well as parvalbumin immunohistochemistry were performed to assess possible abnormalities in the GPG/Vall hamster. Densitometry also was used to quantify levels of parvalbumin immunostaining within neurons and fibers in auditory nuclei. Results: In the present study, missing outer hair cells and spiral ganglion cells were observed in the GPG/Vall hamster. In addition, an increase was noted in the size of spiral ganglion cells as well as a decrease in the volume and cell size of the cochlear nucleus (CN), the superior olivary complex nuclei (SOC), and the nuclei of the lateral lemniscus (LL) and the inferior colliculus (IC). These alterations were accompanied by an increase in levels of parvalbumin immunostaining within CN, SOC, and LL neurons, as well as within parvalbumin-immunostained fibers in the CN and IC. Conclusions: These data are consistent with a cascade of atrophic changes starting in the cochlea and extending along the auditory brainstem in an animal model of inherited epilepsy. Our data also show an upregulation in parvalbumin immunostaining in the neuropil of the IC that may reflect a protective mechanism to prevent cell death in the afferent sources to this nucleus. [source] Electrical activation of the orbicularis oculi muscle does not increase the effectiveness of botulinum toxin type A in patients with blepharospasmEUROPEAN JOURNAL OF NEUROLOGY, Issue 3 2010A. Conte Background:, Our primary aim in this study was to determine whether electrically induced activation of the injected muscle increases effectiveness of botulinum type A toxin (BonT-A) in patients with blepharospasm (BPS). The second aim was to assess the safety of BonT-A by investigating whether BonT-A injection alters the excitability of blink reflex circuits in the brainstem. Methods:, Twenty-three patients with BPS received BonT-A (Botox) injected bilaterally into the orbicularis oculi muscle at a standard dose. In 18 patients, electrically induced muscle activation of the orbicularis oculi muscle on one side was performed for 60 min (4 Hz frequency) in a single session, immediately after BonT-A injection and in five patients for 60 min once a day for five consecutive days. The severity of BPS was assessed clinically with the BPS score. Compound muscle action potential (cMAPs) from the orbicularis oculi muscles were measured bilaterally. The blink reflex recovery cycle was studied at interstimulus intervals of 250 and 500 ms. Participants underwent clinical and neurophysiological assessment before BonT-A injection (T0) and 2 weeks thereafter (T1). Results:, Compound muscle action potential amplitude significantly decreased at T1 but did not differ between stimulated and non-stimulated orbicularis oculi in the two groups. BonT-A injection left the blink reflex recovery cycle tested on the stimulated and non-stimulated sides unchanged. Conclusions:, In patients with BPS, the electrically induced muscle activation neither increases the effectiveness of BonT-A nor produces larger electrophysiological peripheral effects. The lack of BonT-A-induced changes in the blink reflex recovery cycle provides evidence that BonT-A therapy is safe in patients with BPS. [source] New insights into the pathology of Parkinson's disease: does the peripheral autonomic system become central?EUROPEAN JOURNAL OF NEUROLOGY, Issue 2008A. Probst Recent studies in aged, neurologically unimpaired subjects have pointed to a specific induction site of the pathological process of Parkinson's disease (PD) in the region of the dorsal glossopharyngeus,vagus complex as well as in the anterior olfactory nucleus. From the lower brainstem, the disease process would then pursue an ascending course and involve more rostral brainstem areas, limbic structures, and eventually the cerebral cortex. One barrier to the acceptance of the caudal medullary structures as the induction site of PD pathology is that not all parts of the nervous system have been investigated for the presence of PD-associated lesions in cases of early asymptomatic PD. Using alpha-synuclein immunostaining, we investigated the brain, the sacral, and thoracic autonomic nuclei of the spinal cord as well as several components of the peripheral autonomic nervous system in a autopsy cohort of 98 neurologically unimpaired subjects aged 64 or more. Our data indicate that the autonomic nuclei of the spinal cord and the peripheral autonomic nervous system belong to the most constantly and earliest affected regions next to medullary structures and the olfactory nerves in neurologically unimpaired older individuals, thus providing a pathological basis for early premotor autonomic dysfunctions at a prodromal stage of PD. [source] Cerebral blood flow in patients with diffuse axonal injury , examination of the easy Z -score imaging system utilityEUROPEAN JOURNAL OF NEUROLOGY, Issue 5 2007T. Okamoto To evaluate the utility of easy Z -score imaging system (eZIS) in 27 diffuse axonal injury (DAI) cases. Twenty-seven DAI patients were examined with an magnetic resonance imaging (MRI) T2* sequence and with eZIS (seven women, 20 men; age range, 19,35 years; median age: 26.6 years). In this investigation, we excluded patients who exhibited complications such as acute subdural hematoma, acute epidural hematoma, intracerebral hematoma, or brain contusion. We examined the neuropsychological tests and correlated with findings from MRI/eZIS. Furthermore, we evaluated the degree of ventricular enlargement in the bifrontal cerebroventricular index (CVI). Patients were divided into two groups: the enlargement group (bifrontal CVI > 35%, 12 patients) and the non-enlargement group (bifrontal CVI < 35%, 15 patients). All of the patients showed cognitive deficits as observed from the neuropsycological test results. Fifteen out of 27 patients by MRI T1/T2 weighted images and fluid attenuated inversion recovery (FLAIR), 22 out of 27 patients by MRI T2* weighted images and 24 out of 27 patients by eZIS showed abnormal findings. In MRI T2* weighted imaging, the white matter from the frontal lobe, corpus callosum, and brainstem showed abnormal findings. With eZIS, 22 patients (81.5%) showed blood flow degradation in the frontal lobe, and 12 patients (44.4%) in cingulate gyrus. In the enlargement group, Functional Independence Measure, Mini-Mental State Examination, Verbal IQ (VIQ)/Full Scale IQ (FIQ), Trail Making Test-B (TMT-B), and Non-paired of Miyake Paired Test were significantly lower. Amongst 12 patients without ventricular enlargement who had no abnormal findings in MRI T1/T2 weighted images and FLAIR, abnormal findings were detectable in seven patients with MRI T2* weighted imaging and to 10 patients with eZIS. Results of the MRI examination alone cannot fully explain DAI frontal lobe dysfunction. However, addition of the eZIS-assisted analysis derived from the single photon emission computed tomography (SPECT) data enabled us to understand regions where blood flow was decreased, i.e., where neuronal functions conceivably might be reduced. [source] rFVIIa, for acute rebleeding of a cerebral cavernous malformationEUROPEAN JOURNAL OF NEUROLOGY, Issue 1 2007K. Engelhardt Recurrent bleeding episodes of cavernomas especially in the brainstem can cause progressive neurological deficits. Therefore brainstem cavernomas are still a therapeutic dilemma and a treatment challenge for the neuro critical care community. We report a 39-year-old woman with spontaneous ataxia diplopia and vomiting, who has been treated for multiple intracerebral cavernomas during the last 10 years. A cerebral computed tomography (cCT) revealed a re-bleeding cavernoma in the left cerebral peduncle with consecutive obstructive hydrocephalus. As a result of the difficult anatomical location, no surgical approach was possible. As an off-label treatment, recombinant activated factor VII (rFVIIa) was administered to prevent possible further bleeding and especially further sequelae. The patient recovered well and no adverse events and especially no further bleeding of the cavernoma were observed. To our knowledge, this is the first report of the safe and successful use of rFVIIa to treat re-bleeding episodes in cavernomas. Further clinical studies are needed to specify the future potential of rFVIIa. [source] Cortical control of thermoregulatory sympathetic activationEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2010M. Fechir Abstract Thermoregulation enables adaptation to different ambient temperatures. A complex network of central autonomic centres may be involved. In contrast to the brainstem, the role of the cortex has not been clearly evaluated. This study was therefore designed to address cerebral function during a whole thermoregulatory cycle (cold, neutral and warm stimulation) using 18-fluordeoxyglucose-PET (FDG-PET). Sympathetic activation parameters were co-registered. Ten healthy male volunteers were examined three times on three different days in a water-perfused whole-body suit. After a baseline period (32°C), temperature was either decreased to 7°C (cold), increased to 50°C (warm) or kept constant (32°C, neutral), thereafter the PET examination was performed. Cerebral glucose metabolism was increased in infrapontine brainstem and cerebellar hemispheres during cooling and warming, each compared with neutral temperature. Simultaneously, FDG uptake decreased in the bilateral anterior/mid-cingulate cortex during warming, and in the right insula during cooling and warming. Conjunction analyses revealed that right insular deactivation and brainstem activation appeared both during cold and warm stimulation. Metabolic connectivity analyses revealed positive correlations between the cortical activations, and negative correlations between these cortical areas and brainstem/cerebellar regions. Heart rate changes negatively correlated with glucose metabolism in the anterior cingulate cortex and in the middle frontal gyrus/dorsolateral prefrontal cortex, and changes of sweating with glucose metabolism in the posterior cingulate cortex. In summary, these results suggest that the cerebral cortex exerts an inhibitory control on autonomic centres located in the brainstem or cerebellum. These findings may represent reasonable explanations for sympathetic hyperactivity, which occurs, for example, after hemispheric stroke. [source] CNS-irrelevant T-cells enter the brain, cause blood,brain barrier disruption but no glial pathologyEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2007Alina Smorodchenko Abstract Invasion of autoreactive T-cells and alterations of the blood,brain barrier (BBB) represent early pathological manifestations of multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). Non-CNS-specific T-cells are also capable of entering the CNS. However, studies investigating the spatial pattern of BBB alterations as well as the exact localization and neuropathological consequences of transferred non-CNS-specific cells have been thus far lacking. Here, we used magnetic resonance imaging and multiphoton microscopy, as well as histochemical and high-precision unbiased stereological analyses to compare T-cell transmigration, localization, persistence, relation to BBB disruption and subsequent effects on CNS tissue in a model of T-cell transfer of ovalbumin (OVA)- and proteolipid protein (PLP)-specific T-cells. BBB alterations were present in both EAE-mice and mice transferred with OVA-specific T-cells. In the latter case, BBB alterations were less pronounced, but the pattern of initial cell migration into the CNS was similar for both PLP- and OVA-specific cells [mean (SEM), 95 × 103 (7.6 × 103) and 88 × 103 (18 × 103), respectively]. Increased microglial cell density, astrogliosis and demyelination were, however, observed exclusively in the brain of EAE-mice. While mice transferred with non-neural-specific cells showed similar levels of rhodamine-dextran extravasation in susceptible brain regions, EAE-mice presented huge BBB disruption in brainstem and moderate leakage in cerebellum. This suggests that antigen specificity and not the absolute number of infiltrating cells determine the magnitude of BBB disruption and glial pathology. [source] Ret deficiency in mice impairs the development of A5 and A6 neurons and the functional maturation of the respiratory rhythmEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2005J. C. Viemari Abstract Although a normal respiratory rhythm is vital at birth, little is known about the genetic factors controlling the prenatal maturation of the respiratory network in mammals. In Phox2a mutant mice, which do not express A6 neurons, we previously hypothesized that the release of endogenous norepinephrine by A6 neurons is required for a normal respiratory rhythm to occur at birth. Here we investigated the role of the Ret gene, which encodes a transmembrane tyrosine kinase receptor, in the maturation of norepinephrine and respiratory systems. As Ret -null mutants (Ret,/,) did not survive after birth, our experiments were performed in wild-type (wt) and Ret,/, fetuses exteriorized from pregnant heterozygous mice at gestational day 18. First, in wt fetuses, quantitative in situ hybridization revealed high levels of Ret transcripts in the pontine A5 and A6 areas. Second, in Ret,/, fetuses, high-pressure liquid chromatography showed significantly reduced norepinephrine contents in the pons but not the medulla. Third, tyrosine hydroxylase immunocytochemistry revealed a significantly reduced number of pontine A5 and A6 neurons but not medullary norepinephrine neurons in Ret,/, fetuses. Finally, electrophysiological and pharmacological experiments performed on brainstem ,en bloc' preparations demonstrated impaired resting respiratory activity and abnormal responses to central hypoxia and norepinephrine application in Ret,/, fetuses. To conclude, our results show that Ret gene contributes to the prenatal maturation of A6 and A5 neurons and respiratory system. They support the hypothesis that the normal maturation of the respiratory network requires afferent activity corresponding to the A6 excitatory and A5 inhibitory input balance. [source] The SDF-1/CXCR4 pathway and the development of the cerebellar systemEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2005Tim O. Vilz Abstract Mice deficient for the chemokine receptor CXCR4 show premature translocation of granule cell neuroblasts from their germinal zone into the nascent cerebellum [Y.-R. Zuo et al. (1998)Nature, 393, 595,599]. Here, we used CXCR4-null mice to analyse the early development of cerebellar cortical inhibitory interneurons and pontine neurons which, in the adult, are synaptically integrated with granule cells. Cortical inhibitory interneuronal precursors normally invade the cerebellar anlage of CXCR4-deficient mice, but their dispersal is impeded by dislocated foci of proliferating granule cells, from which they are excluded. This is reminiscent of the strict exclusion of inhibitory interneuronal precursors from the superficial external granule cell layer. As inhibitory interneuronal precursors readily mingle with post-mitotic granule cells both in wild-type and CXCR4-null mice, these findings indicate that the developmentally regulated interactions between granule and inhibitory interneuronal precursors are independent of SDF-1/CXCR4 signalling. In contrast, the transit of pontine neurons from the rhombic lip through the anterior extramural stream to the basilar pons is disrupted in CXCR4-deficient animals. Migrating pontine neurons express CXCR4, and in CXCR4-null animals these cells are found displaced deep into the brainstem. Consequently, nascent pontine nuclei in CXCR4-deficient animals are hypoplastic. Moreover, they fail to express plexin D1, suggesting that SDF-1/CXCR4 signalling may also impinge on axon guidance critical to the orderly formation of granule cell mossy fibre afferents. [source] |