| |||
Brain Tissue Sections (brain + tissue_section)
Selected AbstractsInduction of the vascular endothelial growth factor pathway in the brain of adults with fatal falciparum malaria is a non-specific response to severe diseaseHISTOPATHOLOGY, Issue 2 2010Isabelle M. Medana Medana I M, Day N P J, Roberts R, Sachanonta N, Turley H, Pongponratn E, Hien T T, White N J. & Turner G D H (2010) Histopathology,57, 282,294 Induction of the vascular endothelial growth factor pathway in the brain of adults with fatal falciparum malaria is a non-specific response to severe disease Aims:, Pathological or neuroprotective mechanisms in the brain in severe malaria may arise from microvascular obstruction with malaria-parasitized erythrocytes. This study aimed to investigate the role of hypoxia and induction of the vascular endothelial growth factor (VEGF) pathway in the neuropathophysiology of severe malaria. Methods and results:, Immunohistochemistry was performed on post mortem brain tissue sections from 20 cases of severe malaria and examined for the expression of transcriptional regulators of VEGF [hypoxia-inducible factor-1 alpha (HIF-1,), HIF-2,], DEC-1, VEGF, VEGF receptors 1 and 2, and the activated, phosphorylated VEGF receptor 2 (pKDR). HIFs showed limited protein expression and/or translocation to cell nuclei in severe malaria, but DEC-1, which is more stable and regulated by HIF-1,, was observed. There was heterogeneous expression of VEGF and its receptors in severe malaria and non-malarial disease controls. pKDR expression on vessels was greater in malaria cases than in controls but did not correlate with parasite sequestration. VEGF uptake by malaria parasites was observed. Conclusions:, VEGF and its receptor expression levels in severe malaria reflect a non-specific response to severe systemic disease. Potential manipulation of events at the vasculature by the parasite requires further investigation. [source] Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid,ANNALS OF NEUROLOGY, Issue 6 2009Gregory P. Owens PhD Objective Intrathecal IgG synthesis, persistence of bands of oligoclonal IgG, and memory B-cell clonal expansion are well-characterized features of the humoral response in multiple sclerosis (MS). Nevertheless, the target antigen of this response remains enigmatic. Methods We produced 53 different human IgG1 monoclonal recombinant antibodies (rAbs) by coexpressing paired heavy- and light-chain variable region sequences of 51 plasma cell clones and 2 B-lymphocyte clones from MS cerebrospinal fluid in human tissue culture cells. Chimeric control rAbs were generated from anti-myelin hybridomas in which murine variable region sequences were fused to human constant region sequences. Purified rAbs were exhaustively assayed for reactivity against myelin basic protein, proteolipid protein, and myelin oligodendrocyte glycoprotein by immunostaining of transfected cells expressing individual myelin proteins, by protein immunoblotting, and by immunostaining of human brain tissue sections. Results Whereas humanized control rAbs derived from anti-myelin hybridomas and anti-myelin monoclonal antibodies readily detected myelin antigens in multiple immunoassays, none of the rAbs derived from MS cerebrospinal fluid displayed immunoreactivity to the three myelin antigens tested. Immunocytochemical analysis of tissue sections from MS and control brain demonstrated only weak staining with a few rAbs against nuclei or cytoplasmic granules in neurons, glia, and inflammatory cells. Interpretation The oligoclonal B-cell response in MS cerebrospinal fluid is not targeted to the well-characterized myelin antigens myelin basic protein, proteolipid protein, or myelin oligodendrocyte glycoprotein. Ann Neurol 2009;65:639,649 [source] Nonparametric One-way Analysis of Variance of Replicated Bivariate Spatial Point PatternsBIOMETRICAL JOURNAL, Issue 1 2004Sabine Landau Abstract A common problem in neuropathological studies is to assess the spatial patterning of cells on tissue sections and to compare spatial patterning between disorder groups. For a single cell type, the cell positions constitute a univariate point process and interest focuses on the degree of spatial aggregation. For two different cell types, the cell positions constitute a bivariate point process and the degree of spatial interaction between the cell types is of interest. We discuss the problem of analysing univariate and bivariate spatial point patterns in the one-way design where cell patterns have been obtained for groups of subjects. A bootstrapping procedure to perform a nonparametric one-way analysis of variance of the spatial aggregation of a univariate point process has been suggested by Diggle, Lange and Bene, (1991). We extend their replication-based approach to allow the comparison of the spatial interaction of two cell types between groups, to include planned comparisons (contrasts) and to assess whole groups against complete spatial randomness and spatial independence. We also accommodate several replicate tissue sections per subject. An advantage of our approach is that it can be applied when processes are not stationary, a common problem in brain tissue sections since neurons are arranged in cortical layers. We illustrate our methods by applying them to a neuropathological study to investigate abnormalities in the functional relationship between neurons and astrocytes in HIV associated dementia. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Selection of D -Amino-Acid Peptides That Bind to Alzheimer's Disease Amyloid Peptide A,1,42 by Mirror Image Phage DisplayCHEMBIOCHEM, Issue 8 2003Katja Wiesehan Dr. Abstract A mirror image phage display approach was used to identify novel and highly specific ligands for Alzheimer's disease amyloid peptide A,(1,42). A randomized 12-mer peptide library presented on M13 phages was screened for peptides with binding affinity for the mirror image of A,(1,42). After four rounds of selection and amplification the peptides were enriched with a dominating consensus sequence. The mirror image of the most representative peptide (D -pep) was shown to bind A,(1,42) with a dissociation constant in the submicromolar range. Furthermore, in brain tissue sections derived from patients that suffered from Alzheimer's disease, amyloid plaques and leptomeningeal vessels containing A, amyloid were stained specifically with a fluorescence-labeled derivative of D -pep. Fibrillar deposits derived from other amyloidosis were not labeled by D -pep. Possible applications of this novel and highly specific A, ligand in diagnosis and therapy of Alzheimer's disease are discussed. [source] |