| |||
Brain Capillary Endothelial Cells (brain + capillary_endothelial_cell)
Selected AbstractsExpression of the Multidrug Transporter P-glycoprotein in Brain Capillary Endothelial Cells and Brain Parenchyma of Amygdala-kindled RatsEPILEPSIA, Issue 7 2002Ulrike Seegers Summary: ,Purpose: Based on data from brain biopsy samples of patients with pharmacoresistant partial epilepsy, overexpression of the multidrug transporter P-glycoprotein (PGP) in brain capillary endothelium has recently been proposed as a potential mechanism of resistance to antiepileptic drugs (AEDs). We examined whether PGP is overexpressed in brain regions of amygdala-kindled rats, a widely used model of temporal lobe epilepsy (TLE), which is often resistant to AEDs. Methods: Rats were kindled by stimulation of the basolateral amygdala (BLA); electrode-implanted but nonkindled rats and naive (not implanted) rats served as controls. PGP was determined by immunohistochemistry either 1 or 2 weeks after the last kindled seizure, by using a monoclonal anti-PGP antibody. Six brain regions were examined ipsi- and contralateral to the BLA electrode: the BLA, the hippocampal formation, the piriform cortex, the substantia nigra, the frontal and parietal cortex, and the cerebellum. Results: In both kindled rats and controls, PGP staining was observed mainly in microvessel endothelial cells and, to a much lesser extent, in parenchymal cells. The distribution of PGP expression across brain regions was not homogeneous, but significant differences were found in both the endothelial and parenchymal expression of this protein. In kindled rats, ipsilateral PGP expression tended to be higher than contralateral expression in several brain regions, which was statistically significant in the piriform cortex and parietal cortex. However, compared with controls, no significant overexpression of PGP in capillary endothelial cells or brain parenchyma of kindled rats was seen in any ipsilateral brain region, including the BLA. For comparison with kindled rats, kainate-treated rats were used as positive controls. As reported previously, kainate-induced seizures significantly increased PGP expression in the hippocampus and other limbic brain regions. Conclusions: Amygdala-kindling does not induce any lasting overexpression of PGP in several brain regions previously involved in the kindling process. In view of the many pathophysiologic and pharmacologic similarities between the kindling model and TLE, these data may indicate that PGP overexpression in pharmacoresistant patients with TLE is a result of uncontrolled seizures but not of the processes underlying epilepsy. It remains to be determined whether transient PGP overexpression is present in kindled rats shortly after a seizure, and whether pharmacoresistant subgroups of kindled rats exhibit an increased expression of PGP. Furthermore, other multidrug transporters, such as multidrug resistance,associated protein, might be involved in the resistance of kindled rats to AEDs. [source] The Complementary Membranes Forming the Blood-Brain BarrierIUBMB LIFE, Issue 3 2002Richard A. Hawkins Abstract Brain capillary endothelial cells form the blood-brain barrier. They are connected by extensive tight junctions, and are polarized into luminal (blood-facing) and abluminal (brain-facing) plasma membrane domains. The polar distribution of transport proteins allows for active regulation of brain extracellular fluid. Experiments on isolated membrane vesicles from capillary endothelial cells of bovine brain demonstrated the polar arrangement of amino acid and glucose transporters, and the utility of such arrangements have been proposed. For instance, passive carriers for glutamine and glutamate have been found only in the luminal membrane of blood-brain barrier cells, while Na-dependent secondary active transporters are at the abluminal membrane. This organization could promote the net removal of nitrogen-rich amino acids from brain, and account for the low level of glutamate penetration into the central nervous system. Furthermore, the presence of a ,-glutamyl cycle at the luminal membrane and Na-dependent amino acid transporters at the abluminal membrane may serve to modulate movement of amino acids from blood-to-brain. Passive carriers facilitate amino acid transport into brain. However, activation of the ,-glutamyl cycle by increased plasma amino acids is expected to generate oxoproline within the blood-brain barrier. Oxoproline stimulates secondary active amino acid transporters (Systems A and B o,+ ) at the abluminal membrane, thereby reducing net influx of amino acids to brain. Finally, passive glucose transporters are present in both the luminal and abluminal membranes of the blood-brain barrier. Interestingly, a high affinity Na-dependent glucose carrier has been described only in the abluminal membrane. This raises the question whether glucose entry may be regulated to some extent. Immunoblotting studies suggest more than one type of passive glucose transporter exist in the blood-brain barrier, each with an asymmetrical distribution. In conclusion, it is now clear that the blood-brain barrier participates in the active regulation of brain extracellular fluid, and that the diverse functions of each plasma membrane domain contributes to these regulatory functions. [source] High transcytosis of melanotransferrin (P97) across the blood,brain barrierJOURNAL OF NEUROCHEMISTRY, Issue 4 2002Michel Demeule Abstract The blood,brain barrier (BBB) performs a neuroprotective function by tightly controlling access to the brain; consequently it also impedes access of proteins as well as pharmacological agents to cerebral tissues. We demonstrate here that recombinant human melanotransferrin (P97) is highly accumulated into the mouse brain following intravenous injection and in situ brain perfusion. Moreover, P97 transcytosis across bovine brain capillary endothelial cell (BBCEC) monolayers is at least 14-fold higher than that of holo-transferrin, with no apparent intra-endothelial degradation. This high transcytosis of P97 was not related to changes in the BBCEC monolayer integrity. In addition, the transendothelial transport of P97 was sensitive to temperature and was both concentration- and conformation-dependent, suggesting that the transport of P97 is due to receptor-mediated endocytosis. In spite of the high degree of sequence identity between P97 and transferrin, a different receptor than the one for transferrin is involved in P97 transendothelial transport. A member of the low-density lipoprotein receptor protein family, likely LRP, seems to be involved in P97 transendothelial transport. The brain accumulation, high rate of P97 transcytosis and its very low level in the blood suggest that P97 could be advantageously employed as a new delivery system to target drugs directly to the brain. [source] Upregulation of Brain Expression of P-Glycoprotein in MRP2-deficient TR - Rats Resembles Seizure-induced Up-regulation of This Drug Efflux Transporter in Normal RatsEPILEPSIA, Issue 4 2007Katrin Hoffmann Summary:,Purpose: The multidrug resistance protein 2 (MRP2) is a drug efflux transporter that is expressed predominantly at the apical domain of hepatocytes but seems also to be expressed at the apical membrane of brain capillary endothelial cells that form the blood,brain barrier (BBB). MRP2 is absent in the transport-deficient (TR,) Wistar rat mutant, so that this rat strain was very helpful in defining substrates of MRP2 by comparing tissue concentrations or functional activities of compounds in MRP2-deficient rats with those in transport-competent Wistar rats. By using this strategy to study the involvement of MRP2 in brain access of antiepileptic drugs (AEDs), we recently reported that phenytoin is a substrate for MRP2 in the BBB. However, one drawback of such studies in genetically deficient rats is the fact that compensatory changes with upregulation of other transporters can occur. This prompted us to study the brain expression of P-glycoprotein (Pgp), a major drug efflux transporter in many tissues, including the BBB, in TR, rats compared with nonmutant (wild-type) Wistar rats. Methods: The expression of MRP2 and Pgp in brain and liver sections of TR, rats and normal Wistar rats was determined with immunohistochemistry, by using a novel, highly selective monoclonal MRP2 antibody and the monoclonal Pgp antibody C219, respectively. Results: Immunofluorescence staining with the MRP2 antibody was found to label a high number of microvessels throughout the brain in normal Wistar rats, whereas such labeling was absent in TR, rats. TR, rats exhibited a significant up-regulation of Pgp in brain capillary endothelial cells compared with wild-type controls. No such obvious upregulation of Pgp was observed in liver sections. A comparable overexpression of Pgp in the BBB was obtained after pilocarpine-induced seizures in wild-type Wistar rats. Experiments with systemic administration of the Pgp substrate phenobarbital and the selective Pgp inhibitor tariquidar in TR, rats substantiated that Pgp is functional and compensates for the lack of MRP2 in the BBB. Conclusions: The data on TR, rats indicate that Pgp plays an important role in the compensation of MRP2 deficiency in the BBB. Because such a compensatory mechanism most likely occurs to reduce injury to the brain from cytotoxic compounds, the present data substantiate the concept that MRP2 performs a protective role in the BBB. Furthermore, our data suggest that TR, rats are an interesting tool to study consequences of overexpression of Pgp in the BBB on access of drugs in the brain, without the need of inducing seizures or other Pgp-enhancing events for this purpose. [source] Induction of blood-brain barrier properties in cultured brain capillary endothelial cells: Comparison between primary glial cells and C6 cell lineGLIA, Issue 3 2005Monica Boveri Abstract The communication between glial cells and brain capillary endothelial cells is crucial for a well-differentiated blood-brain barrier (BBB). It has been suggested that in vitro primary glial cells (GCs) be replaced by the glial C6 cell line to standardise the model further. This study compares directly the structural and functional differentiation of bovine brain capillary endothelial cells (BBCECs) induced by co-culture with rat primary GCs or C6 cells, for the first time. Trans-endothelial electrical resistance (TEER) measurements showed that under no condition were C6 cells able to reproduce TEER values as high as in the presence of GCs. At the same time, permeability of the BBCECs to both radioactive sucrose and FITC-inulin was 2.5-fold higher when cells were co-cultured with C6 than with GCs. Furthermore, immunocytochemistry studies showed different cell morphology and less developed tight junction pattern of BBCECs co-cultured with C6 toward GCs. Additionally, studies on P-glycoprotein (P-gp) showed much lower P-gp presence and activity in BBCECs co-cultured with C6 than GCs. Both VEGF mRNA expression and protein content were dramatically increased when compared with GCs, suggesting that VEGF could be one of the factors responsible for higher permeability of BBB. Our results clearly indicate that, in the presence of the glial C6 cell line, BBCECs did not differentiate as well as in the co-culture with primary GCs at both structural and functional levels. © 2005 Wiley-Liss, Inc. [source] Intracerebral accumulation of glutaric and 3-hydroxyglutaric acids secondary to limited flux across the blood,brain barrier constitute a biochemical risk factor for neurodegeneration in glutaryl-CoA dehydrogenase deficiencyJOURNAL OF NEUROCHEMISTRY, Issue 3 2006Sven W. Sauer Abstract Glutaric acid (GA) and 3-hydroxyglutaric acids (3-OH-GA) are key metabolites in glutaryl co-enzyme A dehydrogenase (GCDH) deficiency and are both considered to be potential neurotoxins. As cerebral concentrations of GA and 3-OH-GA have not yet been studied systematically, we investigated the tissue-specific distribution of these organic acids and glutarylcarnitine in brain, liver, skeletal and heart muscle of Gcdh -deficient mice as well as in hepatic Gcdh,/, mice and in C57Bl/6 mice following intraperitoneal loading. Furthermore, we determined the flux of GA and 3-OH-GA across the blood,brain barrier (BBB) using porcine brain microvessel endothelial cells. Concentrations of GA, 3-OH-GA and glutarylcarnitine were significantly elevated in all tissues of Gcdh,/, mice. Strikingly, cerebral concentrations of GA and 3-OH-GA were unexpectedly high, reaching similar concentrations as those found in liver. In contrast, cerebral concentrations of these organic acids remained low in hepatic Gcdh,/, mice and after intraperitoneal injection of GA and 3-OH-GA. These results suggest limited flux of GA and 3-OH-GA across the BBB, which was supported in cultured porcine brain capillary endothelial cells. In conclusion, we propose that an intracerebral de novo synthesis and subsequent trapping of GA and 3-OH-GA should be considered as a biochemical risk factor for neurodegeneration in GCDH deficiency. [source] Scavenger receptor class B, type I is expressed in porcine brain capillary endothelial cells and contributes to selective uptake of HDL-associated vitamin EJOURNAL OF NEUROCHEMISTRY, Issue 2 2001Daniel Goti It is clearly established that an efficient supply to the brain of ,-tocopherol (,TocH), the most biologically active member of the vitamin E family, is of the utmost importance for proper neurological functioning. Although the mechanism of uptake of ,TocH into cells constituting the blood,brain barrier (BBB) is obscure, we previously demonstrated that high-density lipoprotein (HDL) plays a major role in the supply of ,TocH to porcine brain capillary endothelial cells (pBCECs). Here we studied whether a porcine analogue of human and rodent scavenger receptor class B, type I mediates selective (without concomitant lipoprotein particle internalization) uptake of HDL-associated ,TocH in a similar manner to that described for HDL-associated cholesteryl esters (CEs). In agreement with this hypothesis we observed that a major proportion of ,TocH uptake by pBCECs occurred by selective uptake, exceeding HDL3 holoparticle uptake by up to 13-fold. The observation that selective uptake of HDL-associated CE exceeded HDL3 holoparticle up to fourfold suggested that a porcine analogue of SR-BI (pSR-BI) may be involved in lipid uptake at the BBB. In line with the observation of selective lipid uptake, RT-PCR and northern and western blot analyses revealed the presence of pSR-BI in cells constituting the BBB. Adenovirus-mediated overexpression of the human analogue of SR-BI (hSR-BI) in pBCECs resulted in a fourfold increase in selective HDL-associated ,TocH uptake. In accordance with the proposed function of SR-BI, selective HDL,CE uptake was increased sixfold in Chinese hamster ovary cells stably transfected with murine SR-BI (mSR-BI). Most importantly stable mSR-BI overexpression mediated a twofold increase in HDL-associated [14C],TocH selective uptake in comparison with control cells. In line with tracer experiments, mass transfer studies with unlabelled lipoproteins revealed that mSR-BI overexpression resulted in a twofold increase in endogenous HDL3 -associated ,TocH uptake. The results of this study indicate that SR-BI promotes the uptake of HDL-associated ,TocH into cells constituting the BBB and plays an important role during the supply of the CNS with this indispensable micronutrient. [source] Therapeutic implications of the MDR-1 geneJOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 5 2004K. L. Mealey Drug transporters significantly influence drug pharmacokinetics and pharmacodynamics. P-glycoprotein (P-gp), the product of the MDR1 (ABCB1) gene, is among the most well-characterized drug transporters, particularly in veterinary medicine. A number of clinically relevant, structurally and functionally unrelated drugs are substrates for P-gp. P-gp is expressed by a variety of normal tissues including the intestines, renal tubular cells, brain capillary endothelial cells, biliary canalicular cells, and others, where it functions to actively extrude substrate drugs. In this capacity, P-gp limits oral absorption and central nervous system entry of many substrate drugs. A number of MDR1 polymorphisms have been described in human patients, some of which result in altered drug pharmacokinetics and susceptibility to diseases such as Parkinson's disease, inflammatory bowel disease, refractory seizures, and others. An MDR1 polymorphism in herding breed dogs, including collies and Australian shepherds, has been demonstrated to be the cause of ivermectin sensitivity in these breeds. Recent evidence suggests that this polymorphism, a 4-bp deletion mutation, results in increased susceptibility to the toxicity of several drugs in addition to ivermectin. Furthermore, data in rodent models suggest that P-gp may play an important role in regulating the hypothalamic,pituitary,adrenal axis. [source] |