Brush Cells (brush + cell)

Distribution by Scientific Domains

Selected Abstracts

A new fate for old cells: brush cells and related elements

A. Sbarbati
Abstract Over the past 50 years, hundreds of studies have described those cells that are characterized by a brush of rigid apical microvilli with long rootlets, and which are found in the digestive and respiratory apparatuses. These cells have been given names such as brush cells, tuft cells, fibrillovesicular cells, multivesicular cells and caveolated cells. More recently, it has been realized that all these elements may represent a single cell type, probably with a chemosensory role, even if other functions (e.g. secretory or absorptive) seem to be possible. Very recent developments have permitted a partial definition of the chemical code characterizing these elements, revealing the presence of molecules involved in chemoreceptorial cell signalling. A molecular cascade, similar to those characterizing the gustatory epithelium, seems to be present in these elements. These new data suggest that these elements can be considered solitary chemosensory cells with the presence of the apical ,brush' as an inconsistent feature. They seem to comprise a diffuse chemosensory system that covers large areas (probably the whole digestive and respiratory apparatuses) with analogies to chemosensory systems described in aquatic vertebrates. [source]

Intrinsic properties and mechanisms of spontaneous firing in mouse cerebellar unipolar brush cells

Marco J. Russo
Neuronal firing patterns are determined by the cell's intrinsic electrical and morphological properties and are regulated by synaptic interactions. While the properties of cerebellar neurons have generally been studied in much detail, little is known about the unipolar brush cells (UBCs), a type of glutamatergic interneuron that is enriched in the granular layer of the mammalian vestibulocerebellum and participates in the representation of head orientation in space. Here we show that UBCs can be distinguished from adjacent granule cells on the basis of differences in membrane capacitance, input resistance and response to hyperpolarizing current injection. We also show that UBCs are intrinsically firing neurons. Using action potential clamp experiments and whole-cell recordings we demonstrate that two currents contribute to this property: a persistent TTX-sensitive sodium current and a ruthenium red-sensitive, TRP-like cationic current, both of which are active during interspike intervals and have reversal potentials positive to threshold. Interestingly, although UBCs are also endowed with a large Ih current, this current is not involved in their intrinsic firing, perhaps because it activates at voltages that are more hyperpolarized than those associated with autonomous activity. [source]