| |||
Bone Structure (bone + structure)
Kinds of Bone Structure Selected AbstractsEvolving Role of Imaging in the Evaluation of Bone Structure,,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 12 2009Tishya A.L. Wren No abstract is available for this article. [source] A Bivariate Whole Genome Linkage Study Identified Genomic Regions Influencing Both BMD and Bone Structure,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2008Xiao-Gang Liu Abstract Areal BMD (aBMD) and areal bone size (ABS) are biologically correlated traits and are each important determinants of bone strength and risk of fractures. Studies showed that aBMD and ABS are genetically correlated, indicating that they may share some common genetic factors, which, however, are largely unknown. To study the genetic factors influencing both aBMD and ABS, bivariate whole genome linkage analyses were conducted for aBMD-ABS at the femoral neck (FN), lumbar spine (LS), and ultradistal (UD)-forearm in a large sample of 451 white pedigrees made up of 4498 individuals. We detected significant linkage on chromosome Xq27 (LOD = 4.89) for LS aBMD-ABS. In addition, we detected suggestive linkages at 20q11 (LOD = 3.65) and Xp11 (LOD = 2.96) for FN aBMD-ABS; at 12p11 (LOD = 3.39) and 17q21 (LOD = 2.94) for LS aBMD-ABS; and at 5q23 (LOD = 3.54), 7p15 (LOD = 3.45), Xq27 (LOD = 2.93), and 12p11 (LOD = 2.92) for UD-forearm aBMD-ABS. Subsequent discrimination analyses indicated that quantitative trait loci (QTLs) at 12p11 and 17q21 may have pleiotropic effects on aBMD and ABS. This study identified several genomic regions that may contain QTLs important for both aBMD and ABS. Further endeavors are necessary to follow these regions to eventually pinpoint the genetic variants affecting bone strength and risk of fractures. [source] In Vivo Determination of Bone Structure in Postmenopausal Women: A Comparison of HR-pQCT and High-Field MR Imaging,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2008Galateia J Kazakia PhD Abstract Bone structural measures obtained by two noninvasive imaging tools,3T MRI and HR-pQCT,were compared. Significant but moderate correlations and 2- to 4-fold discrepancies in parameter values were detected, suggesting that differences in acquisition and analysis must be considered when interpreting data from these imaging modalities. Introduction: High-field MRI and high resolution (HR)-pQCT are currently being used in longitudinal bone structure studies. Substantial differences in acquisition and analysis between these modalities may influence the quantitative data produced and could potentially influence clinical decisions based on their results. Our goal was to compare trabecular and cortical bone structural measures obtained in vivo by 3T MRI and HR-pQCT. Materials and Methods: Postmenopausal osteopenic women (n = 52) were recruited for this study. HR-pQCT imaging of the radius and tibia was performed using the XtremeCT scanner, with a voxel size of 82 × 82 × 82 ,m3. MR imaging was performed on a 3T Signa scanner using SSFP imaging sequences, with a pixel size of 156 × 156 ,m2 and slice thickness of 500 ,m. Structure parameters were calculated using standard HR-pQCT and MRI analysis techniques. Relationships between measures derived from HR-pQCT, MRI, and DXA were studied. Results: Significant correlations between HR-pQCT and MRI parameters were found (p < 0.0001) and were strongest for Tb.N (r2 = 0.52), Ct.Th (r2 = 0.59), and site-specific Tb.Sp (r2 = 0.54,0.60). MRI and HR-pQCT provided statistically different values of structure parameters (p < 0.0001), with BV/TV and Tb.Th exhibiting the largest discrepancies (MR/HR-pQCT = 3,4). Although differences in the Tb.N values were statistically significant, the mean differences were on the order of our reproducibility measurements. Systematic differences between MRI and HR-pQCT analysis procedures leading to discrepancies in cortical thickness values were observed, with MRI values consistently higher. Minimal correlations were found between MRI or HR-pQCT parameters and DXA BMD or T-score, except between HR-pQCT measures at the radius and the ultradistal radius T-scores, where moderate correlations were found (r2 = 0.19,0.58). Conclusions: This study provides unique insight into two emerging noninvasive tools for bone structure evaluation. Our findings highlight the significant influence of analysis technique on results of in vivo assessment and underscore the importance of accounting for these differences when interpreting results from these modalities. [source] Exercise When Young Provides Lifelong Benefits to Bone Structure and Strength,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2007Stuart J Warden PT Abstract Short-term exercise in growing rodents provided lifelong benefits to bone structure, strength, and fatigue resistance. Consequently, exercise when young may reduce the risk for fractures later in life, and the old exercise adage of "use it or lose it" may not be entirely applicable to the skeleton. Introduction: The growing skeleton is most responsive to exercise, but low-trauma fractures predominantly occur in adults. This disparity has raised the question of whether exercised-induced skeletal changes during growth persist into adulthood where they may have antifracture benefits. This study investigated whether brief exercise during growth results in lifelong changes in bone quantity, structure, quality, and mechanical properties. Materials and Methods: Right forearms of 5-week-old Sprague-Dawley rats were exercised 3 days/week for 7 weeks using the forearm axial compression loading model. Left forearms were internal controls and not exercised. Bone quantity (mineral content and areal density) and structure (cortical area and minimum second moment of area [IMIN]) were assessed before and after exercise and during detraining (restriction to home cage activity). Ulnas were removed after 92 weeks of detraining (at 2 years of age) and assessed for bone quality (mineralization) and mechanical properties (ultimate force and fatigue life). Results: Exercise induced consistent bone quantity and structural adaptation. The largest effect was on IMIN, which was 25.4% (95% CI, 15.6,35.3%) greater in exercised ulnas compared with nonexercised ulnas. Bone quantity differences did not persist with detraining, whereas all of the absolute difference in bone structure between exercised and nonexercised ulnas was maintained. After detraining, exercised ulnas had 23.7% (95% CI, 13.0,34.3%) greater ultimate force, indicating enhanced bone strength. However, exercised ulnas also had lower postyield displacement (,26.4%; 95% CI, ,43.6% to ,9.1%), indicating increased brittleness. This resulted from greater mineralization (0.56%; 95% CI, 0.12,1.00%), but did not influence fatigue life, which was 10-fold greater in exercised ulnas. Conclusions: These data indicate that exercise when young can have lifelong benefits on bone structure and strength, and potentially, fracture risk. They suggest that the old exercise adage of "use it or lose it" may not be entirely applicable to the skeleton and that individuals undergoing skeletal growth should be encouraged to perform impact exercise. [source] Recombinant Human Parathyroid Hormone (1,34) [Teriparatide] Improves Both Cortical and Cancellous Bone StructureJOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2003Yebin Jiang MD Abstract Histomorphometry and ,CT of 51 paired iliac crest biopsy specimens from women treated with teriparatide revealed significant increases in cancellous bone volume, cancellous bone connectivity density, cancellous bone plate-like structure, and cortical thickness, and a reduction in marrow star volume. Introduction: We studied the ability of teriparatide (rDNA origin) injection [rhPTH(1,34), TPTD] to improve both cancellous and cortical bone in a subset of women enrolled in the Fracture Prevention Trial of postmenopausal women with osteoporosis after a mean treatment time of 19 months. This is the first report of a biopsy study after treatment with teriparatide having a sufficient number of paired biopsy samples to provide quantitative structural data. Methods: Fifty-one paired iliac crest bone biopsy specimens (placebo [n = 19], 20 ,g teriparatide [n = 18], and 40 ,g teriparatide [n = 14]) were analyzed using both two-dimensional (2D) histomorphometry and three-dimensional (3D) microcomputed tomography (,CT). Data for both teriparatide treatment groups were pooled for analysis. Results and Conclusions: By 2D histomorphometric analyses, teriparatide significantly increased cancellous bone volume (median percent change: teriparatide, 14%; placebo, ,24%; p = 0.001) and reduced marrow star volume (teriparatide, ,16%; placebo, 112%; p = 0.004). Teriparatide administration was not associated with osteomalacia or woven bone, and there were no significant changes in mineral appositional rate or wall thickness. By 3D cancellous and cortical bone structural analyses, teriparatide significantly decreased the cancellous structure model index (teriparatide, ,12%; placebo, 7%; p = 0.025), increased cancellous connectivity density (teriparatide, 19%; placebo, ,14%; p = 0.034), and increased cortical thickness (teriparatide, 22%; placebo, 3%; p = 0.012). These data show that teriparatide treatment of postmenopausal women with osteoporosis significantly increased cancellous bone volume and connectivity, improved trabecular morphology with a shift toward a more plate-like structure, and increased cortical bone thickness. These changes in cancellous and cortical bone morphology should improve biomechanical competence and are consistent with the substantially reduced incidences of vertebral and nonvertebral fractures during administration of teriparatide. [source] Abdominal Aortic Calcification, BMD, and Bone Microstructure: A Population-Based Study,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 10 2008John T Chow Abstract To better define the relationship between vascular calcification and bone mass/structure, we assessed abdominal aortic calcification (AAC), BMD, and bone microstructure in an age-stratified, random sample of 693 Rochester, MN, residents. Participants underwent QCT of the spine and hip and high-resolution pQCT (HRpQCT) of the radius to define volumetric BMD (vBMD) and microstructural parameters. AAC was quantified with the Agatston scoring method. In men, AAC correlated with lower vertebral trabecular and femoral neck vBMD (p < 0.001), but not after age or multivariable (age, body mass index, smoking status) adjustment. Separation into <50 and ,50 yr showed this pattern only in the older men. BV/TV and Tb.Th inversely correlated with AAC in all men (p < 0.001), and Tb.Th remained significantly correlated after age adjustment (p < 0.05). Tb.N positively correlated with AAC in younger men (p < 0.001) but negatively correlated in older men (p < 0.001). The opposite was true with Tb.Sp (p = 0.01 and p < 0.001, respectively). Lower Tb.N and higher Tb.Sp correlated with AAC in older men even after multivariable adjustment. Among all women and postmenopausal women, AAC correlated with lower vertebral and femoral neck vBMD (p < 0.001) but not after adjustment. Lower BV/TV and Tb.Th correlated with AAC (p = 0.03 and p = 0.04, respectively) in women, but not after adjustment. Our findings support an age-dependent association between AAC and vBMD. We also found that AAC correlates with specific bone microstructural parameters in older men, suggesting a possible common pathogenesis for vascular calcification and deterioration in bone structure. However, sex-specific differences exist. [source] Micro-focus X-ray computed tomography images of the 3D structure of the cranium of a fetus with asymmetric double malformationCONGENITAL ANOMALIES, Issue 1 2006Takashi Shibata ABSTRACT,, Reconstructed micro computed tomography (Micro-CT, µ-CT) images have revealed the detailed three-dimensional structure of the cranium of human fetal congenital anomalies for the first time. The objects were a head and a cervix of female autosite and a parasite consisting of only a head conjoined to the scapular region of the autosite of an asymmetric double malformation (asymmetric conjoined twins, heteropagus twinning) at a gestational age of 8 months. The cranium of the autosite was normal, but that of the parasite was characterized by otocephaly (agnathia, synotia, and monorhina) and almost all the cranial bones were of an abnormal shape. It is suggested that a part of occipital bone (the basioccipital and exoccipital bones), the vomer and cribriform plate were absent and this resulted in the fusion and overlapping of bilateral temporal and craniofacial bones that should have been adjacent to them. This resulted in a reformation and relocation of most of the cranial bones. Micro-CT is a useful tool to visualize the detailed bone structure which has not been clarified by the conventional dissection methods and other imaging technologies and is a powerful instrument for studying congenital anomalies. [source] Diet, nutrition and femoral robusticity of hunter-gatherers in southern Patagonia: experiences and perspectivesINTERNATIONAL JOURNAL OF OSTEOARCHAEOLOGY, Issue 2 2009J. A. Suby Abstract Dietary reconstructions through stable isotope studies are one of the most prominent tools for analysing the impact of nutritional and subsistence strategy transitions in the health of past human populations. In the last few years, some palaeopathological studies have been developed related to dietary models proposed for southern Patagonia. In the present work we study the femoral diaphyseal robusticity as an indicator of physical activity and health of a sample of hunter-gatherer individuals from southern Patagonia in relation to their diet, recorded by means of stable isotope values. We discuss the relationship between nutrition and the characteristics of bone structure, as well as the possible impact of pathologies as a source of variability in stable isotope values. Copyright © 2009 John Wiley & Sons, Ltd. [source] Efficacy of ciprofloxacin implants in treating experimental osteomyelitisJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2008H. Alvarez Abstract Ciprofloxacin (CFX) implants containing poly(D,L -lactide) and calcium phosphates (tricalcium phosphate and hydroxyapatite) was evaluated in 50 rabbits in an experimental osteomyelitis model. Their femoral cavity was inoculated with Staphylococcus aureus. After 2 weeks, the infected focus was cleaned out and the delivery system implanted. The infection and subsequent response to treatment were evaluated by microbiological analysis, biochemical and hematological markers, body weight, temperature, clinical signs, X-rays, and histology. Infected bone cultures, treated with CFX implants, showed reduced bacterial growth against controls. All CFX was released within 6 weeks. All animals recovered within 4 weeks. Even 12 weeks after implantation, no recurrence of infection was observed. Serum C-reactive protein, platelet, and leukocyte levels increased in all animals before treatment, and 4 weeks after it were maintained or rose in control animals, while decreased to normal levels in treated ones. Body weight was characterized by pretreatment losses, then gains during recuperation, or further loss in untreated animals; with no significant intraindividual differences in body temperature. Body weight, leucocytes, platelets, and C-reactive protein turned out to be highly useful markers for monitoring this kind of infection and its treatment. CFX implants demonstrated to be an effective therapy for S. aureus bone infection. Their efficacy was also reflected in decreasing severity of clinical signs, nonprogress of radiological signs indicative of infection, and good integration into bone structure. Histological examination revealed repair, with new bone formation extending into implants. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2008 [source] Abdominal Aortic Calcification, BMD, and Bone Microstructure: A Population-Based Study,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 10 2008John T Chow Abstract To better define the relationship between vascular calcification and bone mass/structure, we assessed abdominal aortic calcification (AAC), BMD, and bone microstructure in an age-stratified, random sample of 693 Rochester, MN, residents. Participants underwent QCT of the spine and hip and high-resolution pQCT (HRpQCT) of the radius to define volumetric BMD (vBMD) and microstructural parameters. AAC was quantified with the Agatston scoring method. In men, AAC correlated with lower vertebral trabecular and femoral neck vBMD (p < 0.001), but not after age or multivariable (age, body mass index, smoking status) adjustment. Separation into <50 and ,50 yr showed this pattern only in the older men. BV/TV and Tb.Th inversely correlated with AAC in all men (p < 0.001), and Tb.Th remained significantly correlated after age adjustment (p < 0.05). Tb.N positively correlated with AAC in younger men (p < 0.001) but negatively correlated in older men (p < 0.001). The opposite was true with Tb.Sp (p = 0.01 and p < 0.001, respectively). Lower Tb.N and higher Tb.Sp correlated with AAC in older men even after multivariable adjustment. Among all women and postmenopausal women, AAC correlated with lower vertebral and femoral neck vBMD (p < 0.001) but not after adjustment. Lower BV/TV and Tb.Th correlated with AAC (p = 0.03 and p = 0.04, respectively) in women, but not after adjustment. Our findings support an age-dependent association between AAC and vBMD. We also found that AAC correlates with specific bone microstructural parameters in older men, suggesting a possible common pathogenesis for vascular calcification and deterioration in bone structure. However, sex-specific differences exist. [source] Effects Of a One-Month Treatment With PTH(1,34) on Bone Formation on Cancellous, Endocortical, and Periosteal Surfaces of the Human Ilium,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2007Robert Lindsay MD Abstract Using bone histomorphometry, we found that a 1-month treatment with PTH(1,34) [hPTH(1,34)] stimulated new bone formation on cancellous, endocortical, and periosteal bone surfaces. Enhanced bone formation was associated with an increase in osteoblast apoptosis. Introduction: The precise mechanisms by which hPTH(1,34) increases bone mass and improves bone structure are unclear. Using bone histomorphometry, we studied the early effects of treating postmenopausal women with osteoporosis with hPTH(1,34). Materials and Methods: Tetracycline-labeled iliac crest bone biopsies were obtained from 27 postmenopausal women with osteoporosis who were treated for 1 month with hPTH(1,34), 50 ,g daily subcutaneously. The results were compared with tetracycline-labeled biopsies from a representative control group of 13 postmenopausal women with osteoporosis. Results: The bone formation rate on the cancellous and endocortical surfaces was higher in hPTH(1,34),treated women than in control women by factors of 4.5 and 5.0, respectively. We also showed a 4-fold increase in bone formation rate on the periosteal surface, suggesting that hPTH(1,34) has the potential to increase bone diameter in humans. On the cancellous and endocortical surfaces, the increased bone formation rate was primarily caused by stimulation of formation in ongoing remodeling units, with a modest amount of increased formation on previously quiescent surfaces. hPTH(1,34),stimulated bone formation was associated with an increase in osteoblast apoptosis, which may reflect enhanced turnover of the osteoblast population and may contribute to the anabolic action of hPTH(1,34). Conclusions: These findings provide new insight into the cellular basis by which hPTH(1,34) improves cancellous and cortical bone architecture and geometry in patients with osteoporosis. [source] Exercise When Young Provides Lifelong Benefits to Bone Structure and Strength,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2007Stuart J Warden PT Abstract Short-term exercise in growing rodents provided lifelong benefits to bone structure, strength, and fatigue resistance. Consequently, exercise when young may reduce the risk for fractures later in life, and the old exercise adage of "use it or lose it" may not be entirely applicable to the skeleton. Introduction: The growing skeleton is most responsive to exercise, but low-trauma fractures predominantly occur in adults. This disparity has raised the question of whether exercised-induced skeletal changes during growth persist into adulthood where they may have antifracture benefits. This study investigated whether brief exercise during growth results in lifelong changes in bone quantity, structure, quality, and mechanical properties. Materials and Methods: Right forearms of 5-week-old Sprague-Dawley rats were exercised 3 days/week for 7 weeks using the forearm axial compression loading model. Left forearms were internal controls and not exercised. Bone quantity (mineral content and areal density) and structure (cortical area and minimum second moment of area [IMIN]) were assessed before and after exercise and during detraining (restriction to home cage activity). Ulnas were removed after 92 weeks of detraining (at 2 years of age) and assessed for bone quality (mineralization) and mechanical properties (ultimate force and fatigue life). Results: Exercise induced consistent bone quantity and structural adaptation. The largest effect was on IMIN, which was 25.4% (95% CI, 15.6,35.3%) greater in exercised ulnas compared with nonexercised ulnas. Bone quantity differences did not persist with detraining, whereas all of the absolute difference in bone structure between exercised and nonexercised ulnas was maintained. After detraining, exercised ulnas had 23.7% (95% CI, 13.0,34.3%) greater ultimate force, indicating enhanced bone strength. However, exercised ulnas also had lower postyield displacement (,26.4%; 95% CI, ,43.6% to ,9.1%), indicating increased brittleness. This resulted from greater mineralization (0.56%; 95% CI, 0.12,1.00%), but did not influence fatigue life, which was 10-fold greater in exercised ulnas. Conclusions: These data indicate that exercise when young can have lifelong benefits on bone structure and strength, and potentially, fracture risk. They suggest that the old exercise adage of "use it or lose it" may not be entirely applicable to the skeleton and that individuals undergoing skeletal growth should be encouraged to perform impact exercise. [source] Paricalcitol [19-Nor-1,25-(OH)2D2] in the Treatment of Experimental Renal Bone Disease,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2006Jarkko Jokihaara Abstract Paricalcitol is a less hypercalcemic vitamin D analog that has been shown to suppress secondary hyperparathyroidism and to prevent the associated histomorphometric changes in bone. In this study, we show that paricalcitol also ameliorates the renal insufficiency-induced loss of bone mineral and the mechanical competence of bone. Introduction: Renal bone disease is a common consequence of chronic renal insufficiency and the associated secondary hyperparathyroidism (SH). Paricalcitol [19-nor-1,25(OH)2D2] has been shown to ameliorate SH and prevent renal failure,induced histomorphometric changes in bone with minimal calcemic and phosphatemic activity. However, information about its efficacy on restoration of bone structural strength is lacking. In this study, we explored the effects of paricalcitol treatment on bone structure and strength in a model of advanced renal disease. Materials and Methods: Forty-five 8-week-old rats were randomly assigned to either surgical 5/6 nephrectomy (NTX) or Sham-operation. After a 15-week postoperative disease progression period, the NTX rats were further allocated to uremic control (NTX) and treatment (NTX + paricalcitol) groups, the latter of which received paricalcitol for the subsequent 12 weeks. After 27 weeks, the animals were killed, plasma samples were collected, and both femora were excised for comprehensive analysis of the femoral neck and midshaft (pQCT and biomechanical testing). Results: High mortality that exceeded 30% was observed in both NTX groups. NTX induced over a 13-fold increase in plasma PTH, whereas this increase was only 5-fold after paricalcitol treatment. At the femoral neck, NTX was associated with an 8.1% decrease (p < 0.05) in vBMD and a 16% decrease in breaking load (p < 0.05) compared with the Sham group, whereas paricalcitol treatment completely prevented these changes. At the femoral midshaft, the NTX resulted in a 6.6% decrease in cortical BMD (p < 0.01 versus Sham), and this change was also prevented by paricalcitol. Conclusions: Paricalcitol administration prevented renal insufficiency-associated decreases in BMD in the femoral neck and the femoral midshaft and restored bone strength in the femoral neck. Therefore, paricalcitol can efficiently ameliorate renal insufficiency-induced loss of bone mineral and mechanical competence of bone. [source] Whole-Genome Scan for Linkage to Bone Strength and Structure in Inbred Fischer 344 and Lewis Rats,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2005Imranul Alam Abstract A genome-wide genetic linkage analysis identified several chromosomal regions influencing bone strength and structure in F2 progeny of Fischer 344 x Lewis inbred rats. Introduction: Inbred Fischer 344 (F344) and Lewis (LEW) rats are similar in body size, but the F344 rats have significantly lower BMD and biomechanical strength of the femur and spine compared with LEW rats. The goal of this study was to identify quantitative trait loci (QTL) linked to bone strength and structure in adult female F2 rats from F344 and LEW progenitors. Materials and Methods: The 595 F2 progeny from F344 x LEW rats were phenotyped for measures of bone strength (ultimate force {Fu}; energy to break {U}; stiffness {S}) of the femur and lumbar vertebra and structure (femur midshaft polar moment of inertia {Ip}; femur midshaft cortical area; vertebral area). A genome-wide scan was completed in the F2 rats using 118 microsatellite markers at an average interval of 20 cM. Multipoint quantitative linkage analysis was performed to identify chromosomal regions that harbor QTL for bone strength and structure phenotypes. Results: Evidence of linkage for femur and lumbar strength was observed on chromosomes (Chrs) 1, 2, 5, 10, and 19. Significant linkage for femoral structure was detected on Chrs 2, 4, 5, 7, and 15. QTLs affecting femoral strength on Chrs 2 and 5 were also found to influence femur structure. Unique QTLs on Chrs 1, 10, and 19 were found that contributed to variability in bone strength but had no significant effect on structure. Also, unique QTLs were observed on Chrs 4, 7, and 15 that affected only bone structure without any effect on biomechanics. Conclusion: We showed multiple genetic loci influencing bone strength and structure in F344 x LEW F2 rats. Some of these loci are homologous to mouse and human chromosomes previously linked to related bone phenotypes. [source] In Silico Modeling and Simulation of Bone Biology: A ProposalJOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2005Nadine A Defranoux Abstract Contemporary, computer-based mathematical modeling techniques make it possible to represent complex biological mechanisms in a manner that permits hypothesis testing in silico. This perspective shows how such approaches might be applied to bone remodeling and therapeutic research. Currently, the dominant conceptual model applied in bone research involves the dynamic balance between the continual build-up and breakdown of bone matrix by two cell types, the osteoblasts and osteoclasts, acting together as a coordinated, remodeling unit. This conceptualization has served extraordinarily well as a focal point for understanding how mutations, chemical mediators, and mechanical force, as well as external influences (e.g., drugs, diet) affect bone structure and function. However, the need remains to better understand and predict the consequences of manipulating any single factor, or combination of factors, within the context of this complex system's multiple interacting pathways. Mathematical models are a natural extension of conceptual models, providing dynamic, quantitative descriptions of the relationships among interacting components. This formalization creates the ability to simulate the natural behavior of a system, as well as its modulation by therapeutic or dietetic interventions. A number of mathematical models have been developed to study complex bone functions, but most include only a limited set of biological components needed to address a few specific questions. However, it is possible to develop larger, multiscale models that capture the dynamic interactions of many biological components and relate them to important physiological or pathological outcomes that allow broader study. Examples of such models include Entelos' PhysioLab platforms. These models simulate the dynamic, quantitative interactions among a biological system's biochemicals, cells, tissues, and organs and how they give rise to key physiologic and pathophysiologic outcomes. We propose that a similar predictive, dynamical, multiscale mathematical model of bone remodeling and metabolism would provide a better understanding of the mechanisms governing these phenomena as well as serve as an in silico platform for testing pharmaceutical and clinical interventions on metabolic bone disease. [source] The Influence of an Insulin-Like Growth Factor I Gene Promoter Polymorphism on Hip Bone Geometry and the Risk of Nonvertebral Fracture in the Elderly: The Rotterdam Study,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2004Fernando Rivadeneira Abstract The absence of the wildtype allele of a promoter polymorphism of the IGF-I gene is associated with increased risk (1.5; 95% CI, 1.1-2.0) of fragility fracture in women (n = 4212) but not in men (n = 2799). An approximation of hip bone geometry (from DXA) suggested the polymorphism is associated with bone strength and stability in gender-specific ways. Introduction: Previously, we found a CA-repeat promoter polymorphism in the insulin-like growth factor I (IGF-I) gene associated with IGF-I levels and BMD in postmenopausal women, but the relationship with fractures is unclear. In this large population-based study of elderly men and women, we examined the association between this IGF-I promoter polymorphism with parameters of bone geometry and the occurrence of fractures. Material and Methods: Within the Rotterdam Study, a prospective population-based cohort, the IGF-I polymorphism was analyzed in relation to incident nonvertebral fractures in 2799 men and 4212 women followed on average for 8.6 years. Furthermore, we estimated structural parameters of hip bone geometry indirectly from DXA outputs of the femoral neck in 2372 men and 3114 women. We studied neck width, cortical thickness, and the cortical buckling ratio and the section modulus as indexes of bone stability and bending strength. Results: Women heterozygotes and noncarriers of the allele had, respectively, 1.2 (95% CI, 1.0-1.5) and 1.5 (95% CI, 1.1-2.0) increased risk of having a fragility fracture at older age compared with homozygotes for the 192-bp allele (p trend = 0.0007). In men, fracture risk was not influenced by the polymorphism. Compared with homozygotes for the 192-bp allele, noncarrier males had ,1% narrower femoral necks and 2.2% lower section moduli (p trend < 0.05). Noncarrier females had 1.7% thinner cortices and 1.6% higher buckling ratios (p trend < 0.05) but no significant differences in femoral neck widths and section moduli. In women with low body mass index, genotype differences in bone strength (section modulus) and fracture risk were accentuated (p interaction = 0.05). The genotype-dependent differences in hip bone geometry did not fully explain the genotype-dependent differences in fracture risk. Conclusions: The CA-repeat promoter polymorphism in the IGF-I gene is associated with the risk for fragility fracture at old age in women and with bone structure in both genders. [source] Genetically Based Influences on the Site-Specific Regulation of Trabecular and Cortical Bone Morphology,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2004Stefan Judex Abstract The degree of site-specificity by which genes influence bone quantity and architecture was investigated in the femur of three strains of mice. Morphological indices were highly dependent on both genetic makeup as well as anatomical location showing that the assessment of bone structure from a single site cannot be extrapolated to other sites even within a single bone. Introduction: The identification of genes responsible for establishing peak BMD will yield critical information on the regulation of bone quantity and quality. Whereas such knowledge may eventually uncover novel molecular drug targets or enable the identification of individuals at risk of osteoporosis, the site-specificity by which putative genotypes cause low or high bone mass (and effective bone morphology) is essentially unknown. Materials and Methods: ,CT was used to determine morphological and microarchitectural features of the femora harvested from three genetically distinct strains of 4-month-old female mice, each with distinct skeletal mass (low: C57BL/6J [B6], medium: BALB/cByJ [BALB], high: C3H/HeJ [C3H]). Two trabecular regions (distal epiphysis and metaphysis) were considered in addition to four cortical regions within the metaphysis and diaphysis. Results and Conclusions: Comparing morphological properties of the different trabecular and cortical femoral regions between the three strains of mice, it was apparent that high or low values of specific parameters of bone morphology could not be consistently attributed to the same genetic strain. Trabecular metaphyseal bone volume, for instance, was 385% larger in C3H mice than in B6 mice, yet the two strains displayed similar bone volume fractions in the epiphysis. Similarly, BALB mice had 48% more trabecular bone than C3H mice in the epiphysis, but there were no strain-specific differences in cortical bone area at the diaphysis. These data suggest that the genetic control of bone mass and morphology, even within a given bone, is highly site-specific and that a comprehensive search for genes that are indicative of bone quantity and quality may also have to occur on a very site-specific basis. [source] Insulin-Like Growth Factor I Is Required for the Anabolic Actions of Parathyroid Hormone on Mouse Bone,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2002Daniel D. Bikle M.D., Ph.D. Abstract Parathyroid hormone (PTH) is a potent anabolic agent for bone, but the mechanism(s) by which it works remains imperfectly understood. Previous studies have indicated that PTH stimulates insulin-like growth factor (IGF) I production, but it remains uncertain whether IGF-I mediates some or all of the skeletal actions of PTH. To address this question, we examined the skeletal response to PTH in IGF-I-deficient (knockout [k/o]) mice. These mice and their normal littermates (NLMs) were given daily injections of PTH (80 ,g/kg) or vehicle for 2 weeks after which their tibias were examined for fat-free weight (FFW), bone mineral content, bone structure, and bone formation rate (BFR), and their femurs were assessed for mRNA levels of osteoblast differentiation markers. In wild-type mice, PTH increased FFW, periosteal BFR, and cortical thickness (C.Th) of the proximal tibia while reducing trabecular bone volume (BV); these responses were not seen in the k/o mice. The k/o mice had normal mRNA levels of the PTH receptor and increased mRNA levels of the IGF-I receptor but markedly reduced basal mRNA levels of the osteoblast markers. Surprisingly, these mRNAs in the k/o bones increased several-fold more in response to PTH than the mRNAs in the bones from their wild-type littermates. These results indicate that IGF-I is required for the anabolic actions of PTH on bone formation, but the defect lies distal to the initial response of the osteoblast to PTH. [source] Type I Collagen Racemization and Isomerization and the Risk of Fracture in Postmenopausal Women: The OFELY Prospective StudyJOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2002Patrick Garnero Ph.D. Abstract The Asp1211 residue of the1209AHDGGR1214 sequence of the C-terminal cross-linking telopeptide of type I collagen (CTX) can undergo spontaneous post-translational modifications, namely, racemization and isomerization, which result in the formation of four isomers: the native form (,- L) and three age-related forms, that is, an isomerized form (,- L), a racemized form (,- D), and an isomerized/racemized (,- D) form. Previous studies have suggested that changes in the pattern of type I collagen racemization/isomerization, which can be assessed in vivo by measuring the degradation products of the CTX isoforms, may be associated with alterations of bone structure. The aim of this study was to examine prospectively the value of the different urinary CTX isoforms and their related ratio in the prediction of osteoporotic fractures in 408 healthy untreated postmenopausal women aged 50-89 years (mean, 64 years) who were part of the OFELY cohort. During a median 6.8 years follow-up, 16 incident vertebral fractures and 55 peripheral fractures were recorded in 65 women. The baseline levels of the four CTX isoforms in women who subsequently had a fracture were compared with those of the 343 women who did not fracture. At baseline, women with fractures had increased levels of ratios of native ,- L -CTX to age-related isoforms (,- L, ,- D, and ,- D) compared with controls (p < 0.01). In logistic regression analysis after adjustment for age, prevalent fractures, and physical activity, women with levels of ,- L/,- L, ,- L/,- D, and ,- L/,- D -CTX ratios in the highest quartile had a 1.5- to 2-fold increased risk of fractures compared with women with levels in the three lowest quartiles with relative risk (RR) and 95% CI of 2.0 (1.2-3.5), 1.8 (1.02-2.7), and 1.5 (0.9-2.7), respectively. Adjustment of ,- L/,- L and ,- L/,- D -CTX ratios by the level of bone turnover assessed by serum bone alkaline phosphatase (ALP)- or femoral neck bone mineral density (BMD) decreased slightly the RR, which remained significant for the ,- L/,- L -CTX ratio (RR [95%] CI, 1.8 [1.1-3.2] after adjustment for bone ALP, 1.8 [1.03-3.1] after adjustment for BMD, and 1.7 [0.95-2.9] after adjustment for both bone ALP and BMD). Women with both high ,- L/,- L -CTX ratio and high bone ALP had a 50% higher risk of fracture than women with either one of these two risk factors. Similarly, women with both increased CTX ratio and low femoral neck BMD (T score < ,2.5) had a higher risk of fracture with an RR (95% CI) of 4.5 (2.0-10.1). In conclusion, increased urinary ratio between native and age-related forms of CTX, reflecting decreased degree of type I collagen racemization/isomerization, is associated with increased fracture risk independently of BMD and partly of bone turnover rate. This suggests that alterations of type I collagen isomerization/racemization that can be detected by changes in urinary CTX ratios may be associated with increased skeletal fragility. [source] A Randomized School-Based Jumping Intervention Confers Site and Maturity-Specific Benefits on Bone Structural Properties in Girls: A Hip Structural Analysis Study,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 3 2002M. A. Petit Abstract We compared 7-month changes in bone structural properties in pre- and early-pubertal girls randomized to exercise intervention (10-minute, 3 times per week, jumping program) or control groups. Girls were classified as prepubertal (PRE; Tanner breast stage 1; n = 43 for intervention [I] and n = 25 for control [C]) or early-pubertal (EARLY; Tanner stages 2 and 3; n = 43 for I and n = 63 for C). Mean ± SD age was 10.0 ± 0.6 and 10.5 ± 0.6 for the PRE and EARLY groups, respectively. Proximal femur scans were analyzed using a hip structural analysis (HSA) program to assess bone mineral density (BMD), subperiosteal width, and cross-sectional area and to estimate cortical thickness, endosteal diameter, and section modulus at the femoral neck (FN), intertrochanter (IT), and femoral shaft (FS) regions. There were no differences between intervention and control groups for baseline height, weight, calcium intake, or physical activity or for change over 7 months (p > 0.05). We used analysis of covariance (ANCOVA) to examine group differences in changes of bone structure, adjusting for baseline weight, height change, Tanner breast stage, and physical activity. There were no differences in change for bone structure in the PRE girls. The more mature girls (EARLY) in the intervention group showed significantly greater gains in FN (+2.6%, p = 0.03) and IT (+1.7%, p = 0.02) BMD. Underpinning these changes were increased bone cross-sectional area and reduced endosteal expansion. Changes in subperiosteal dimensions did not differ. Structural changes improved section modulus (bending strength) at the FN (+4.0%, p = 0.04), but not at the IT region. There were no differences at the primarily cortical FS. These data provide insight into geometric changes that underpin exercise-associated gain in bone strength in early-pubertal girls. [source] The Skeletal Structure of Insulin-Like Growth Factor I-Deficient MiceJOURNAL OF BONE AND MINERAL RESEARCH, Issue 12 2001Daniel Bikle Abstract The importance of insulin-like growth factor I (IGF-I) for growth is well established. However, the lack of IGF-I on the skeleton has not been examined thoroughly. Therefore, we analyzed the structural properties of bone from mice rendered IGF-I deficient by homologous recombination (knockout [k/o]) using histomorphometry, peripheral quantitative computerized tomography (pQCT), and microcomputerized tomography (,CT). The k/o mice were 24% the size of their wild-type littermates at the time of study (4 months). The k/o tibias were 28% and L1 vertebrae were 26% the size of wild-type bones. Bone formation rates (BFR) of k/o tibias were 27% that of the wild-type littermates. The k/o bones responded normally to growth hormone (GH; 1.7-fold increase) and supranormally to IGF-I (5.2-fold increase) with respect to BFR. Cortical thickness of the proximal tibia was reduced 17% in the k/o mouse. However, trabecular bone volume (bone volume/total volume [BV/TV]) was increased 23% (male mice) and 88% (female mice) in the k/o mice compared with wild-type controls as a result of increased connectivity, increased number, and decreased spacing of the trabeculae. These changes were either less or not found in L1. Thus, lack of IGF-I leads to the development of a bone structure, which, although smaller, appears more compact. [source] Lasofoxifene (CP-336,156) Protects Against the Age-Related Changes in Bone Mass, Bone Strength, and Total Serum Cholesterol in Intact Aged Male RatsJOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2001Hua Zhu Ke Abstract The purpose of this study was to evaluate if long-term (6 months) treatment with lasofoxifene (LAS), a new selective estrogen receptor modulator (SERM), can protect against age-related changes in bone mass and bone strength in intact aged male rats. Sprague-Dawley male rats at 15 months of age were treated (daily oral gavage) with either vehicle (n = 12) or LAS at 0.01 mg/kg per day (n = 12) or 0.1 mg/kg per day (n = 11) for 6 months. A group of 15 rats was necropsied at 15 months of age and served as basal controls. No significant change was found in body weight between basal and vehicle controls. However, an age-related increase in fat body mass (+42%) and decrease in lean body mass (,8.5%) was observed in controls. Compared with vehicle controls, LAS at both doses significantly decreased body weight and fat body mass but did not affect lean body mass. No significant difference was found in prostate wet weight among all groups. Total serum cholesterol was significantly decreased in all LAS-treated rats compared with both the basal and the vehicle controls. Both doses of LAS treatment completely prevented the age-related increase in serum osteocalcin. Peripheral quantitative computerized tomography (pQCT) analysis at the distal femoral metaphysis indicated that the age-related decrease in total density, trabecular density, and cortical thickness was completely prevented by treatment with LAS at 0.01 mg/kg per day or 0.1 mg/kg per day. Histomorphometric analysis of proximal tibial cancellous bone showed an age-related decrease in trabecular bone volume (TBV; ,46%), trabecular number (Tb.N), wall thickness (W.Th), mineral apposition rate, and bone formation rate-tissue area referent. Moreover, an age-related increase in trabecular separation (Tb.Sp) and eroded surface was observed. LAS at 0.01 mg/kg per day or 0.1 mg/kg per day completely prevented these age-related changes in bone mass, bone structure, and bone turnover. Similarly, the age-related decrease in TBV and trabecular thickness (Tb.Th) and the age-related increase in osteoclast number (Oc.N) and osteoclast surface (Oc.S) in the third lumbar vertebral cancellous bone were completely prevented by treatment with LAS at both doses. Further, LAS at both doses completely prevented the age-related decrease in ultimate strength (,47%) and stiffness (,37%) of the fifth lumbar vertebral body. These results show that treatment with LAS for 6 months in male rats completely prevents the age-related decreases in bone mass and bone strength by inhibiting the increased bone resorption and bone turnover associated with aging. Further, LAS reduced total serum cholesterol and did not affect the prostate weight in these rats. Our data support the potential use of a SERM for protecting against the age-related changes in bone and serum cholesterol in elderly men. [source] Daidzein but not other phytoestrogens preserves bone architecture in ovariectomized female rats in vivoJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2008D. Somjen Abstract Ovariectomy of immature female rats, results in significant decrease of trabecular bone volume and in cortical bone thickness. Previously, we found that estradiol-17, (E2) restored bone structure of ovariectomized (Ovx) female rats to values obtained in intact sham-operated female rats. E2 also selectively stimulated creatine kinase (CK) specific activity a hormonal-genomic activity marker. In the present study, we compared the effects of E2 and the phytoestrogens: daidzein (D), biochainin A (BA), genistein (G), carboxy-derivative of BA (cBA), and the SERM raloxifene (Ral) in Ovx, on both histological changes of bones and CK, when administered in multiple daily injections for 2.5 months. Bone from Ovx rats, showed significant disrupted architecture of the growth plate, with fewer proliferative cells and less chondroblasts. The metaphysis underneath the growth plate, contained less trabeculae but a significant increased number of adipocytes in the bone marrow. D like E2 and Ral but not G, BA, or cBA, restored the morphology of the tibiae, similar to that of control sham-operated animals; the bony trabeculeae observed in the primary spongiosa was thicker, with almost no adipocytes in bone marrow. Ovariectomy resulted also in reduced CK, which in both epiphysis and diaphysis was stimulated by all estrogenic compounds tested. In summary, only D stimulated skeletal tissues growth and differentiation as effectively as E2 or Ral, suggesting that under our experimental conditions, D is more effective in reversing menopausal changes than any of the other isolated phytoestrogens which cannot be considered as one entity. J. Cell. Biochem. 103: 1826,1832, 2007. © 2007 Wiley-Liss, Inc. [source] The Effects of Chemical and Heat Maceration Techniques on the Recovery of Nuclear and Mitochondrial DNA from Bone,JOURNAL OF FORENSIC SCIENCES, Issue 1 2006Dawnie Wolfe Steadman Ph.D. ABSTRACT: Forensic anthropologists use a number of maceration techniques to facilitate skeletal analysis of personal identity and trauma, but they may unwittingly eliminate valuable DNA evidence in the process. This study evaluated the effect of 10 maceration methods on gross bone structure and the preservation of DNA in ribs of 12 pigs (Sus scrofa). A scoring system was applied to evaluate the ease of maceration and resulting bone quality while DNA purity was quantified by optical densitometry analysis, followed by polymerase chain reaction (PCR) amplification of three mitochondrial and three nuclear loci. The results demonstrated that while mitochondrial DNA could be amplified for all experiments, cleaning treatments using bleach, hydrogen peroxide, ethylenediaminetetraacetic acid/papain, room temperature water and detergent/sodium carbonate followed by degreasing had low DNA concentrations and failed to generate nuclear PCR products. In general, treatments performed at high temperatures (90°C or above) for short durations performed best. This study shows that traditionally "conservative" maceration techniques are not necessarily the best methods to yield DNA from skeletal tissue. [source] In vivo ultra-high-field magnetic resonance imaging of trabecular bone microarchitecture at 7 TJOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 4 2008Roland Krug PhD Abstract Purpose To investigate the feasibility of 7T magnetic resonance imaging (MRI) to visualize and quantify trabecular bone structure in vivo by comparison with 3T MRI and in vivo three-dimensional (3D) high-resolution peripheral quantitative computed tomography (HR-pQCT). Materials and Methods The distal tibiae of 10 healthy volunteers were imaged. Therefore, fully balanced steady state free precession (bSSFP) and spin-echo (bSSSE) pulse sequences were implemented and optimized for 7T. Structural bone parameters, such as apparent bone-volume over total-volume fraction (app.BV/TV), apparent trabecular plate separation (app.TbSp), apparent trabecular plate thickness (app.TbTh), and apparent trabecular plate number (app.TbN), were derived. Results All structural trabecular bone parameters correlated well (r > 0.6) between 7T and 3T, and between 7T and HR-pQCT (r > 0.69), with the exception of app.TbTh, which correlated modestly (r = 0.41) between field strengths and very low with HR-pQCT (r < 0.16). Regarding absolute values, app.TbN varied only 4% between field strengths, and only 0.6% between 7T and HR-pQCT. App.TbSp correlated best between 7T and HR-pQCT (r = 0.89). Using bSSSE, significant smaller trabecular thickness and significant higher trabecular number were found compared to bSSFP. Conclusion We concluded that imaging and quantification of the trabecular bone architecture at 7T is feasible and preferably done using bSSSE. There exists great potential for ultra-high-field (UHF) MRI applied to trabecular bone measurements. J. Magn. Reson. Imaging 2008;27:854,859. © 2008 Wiley-Liss, Inc. [source] Elemental distributions in femoral bone of rat under osteoporosis preventive treatmentsJOURNAL OF MICROSCOPY, Issue 3 2006M. D. YNSA Summary One of the abnormalities of bone architecture is osteoporosis as occurring in post-menopausal women. Especially long bones, such as femur, become more fragile and more prone to fracture. The efficiency of several osteoporosis preventative treatments based on oestrogen and progestin in bone structure and mineral recovery was studied using ovariectomized Wistar rats as an osteoporosis experimental model. Diagonal cross-sections of the proximal epiphysis of femoral bones were analysed using nuclear microscopy techniques in order to map and determine the concentration profiles of P, Ca, S, Fe and Zn from the epiphysis to diaphysis and across the cortical and trabecular bone structures. In control animals (not ovariectomized), the S and Zn contents significantly characterized differences between cortical and trabecular bone structures, whereas P and Ca showed increased gradients from the epiphyseal region to the diaphysis. After ovariectomy the differences observed were differential according to the type of hormonal supplementation. A significant decrease in P and Ca contents and depletion of minor and trace minerals, such as S, Fe and Zn, were found for both cortical and trabecular bone structures after ovariectomy relative to controls. Bone mineral contents were reversed to control levels by synthetic oestrogen supplementation, and combined oestrogen and progesterone treatment. Recovery was more evident in the femoral epiphysis and neck than in the diaphysis. The use of oestrogen alone did not lead to bone recovery after ovariectomy. Alterations in bone mineral composition observed for animals receiving synthetic oestrogen and combined oestrogen and progesterone supplement might reflect beneficial structural changes in critical regions of long bones, mostly affected in post-menopausal osteoporosis. [source] Effects of vibration treatment on tibial bone of ovariectomized rats analyzed by in vivo micro-CTJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 1 2010Julienne E.M. Brouwers Abstract Daily low-amplitude, high-frequency whole-body vibration (WBV) treatment can increase bone formation rates and bone volume in rodents. Its effects vary, however, with vibration characteristics and study design, and effects on 3D bone microstructure of ovariectomized animals over time have not been documented. Our goal was to determine the effects of WBV on tibial bone of ovariectomized, mature rats over time using an in vivo micro-CT scanner. Adult rats were divided into: ovariectomy (OVX) (n,=,8), SHAM-OVX (n,=,8), OVX and WBV treatment (n,=,7). Eight weeks after OVX, rats in the vibration group were placed on a vibrating platform for 20,min at 0.3,g and 90 Hertz. This was done 5 days a week for six weeks, twice a day. Zero, 8, 10, 12 and 14 weeks after OVX, in vivo micro-CT scans were made (vivaCT 40, Scanco Medical AG) of the proximal and diaphyseal tibia. After sacrifice, all tibiae were dissected and tested in three-point bending. In the metaphysis between 8 to 12 weeks after OVX, WBV treatment did not alter structural parameters compared to the OVX group and both groups continued to show deterioration of bone structure. In the epiphysis, structural parameters were not altered. WBV also did not affect cortical bone and its bending properties. To summarize, no substantial effects of 6 weeks of low-magnitude, high-frequency vibration treatment on tibial bone microstructure and strength in ovariectomized rats were found. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:62,69, 2010 [source] Remodeling of fracture callus in mice is consistent with mechanical loading and bone remodeling theoryJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 5 2009Hanna Isaksson Abstract During the remodeling phase of fracture healing in mice, the callus gradually transforms into a double cortex, which thereafter merges into one cortex. In large animals, a double cortex normally does not form. We investigated whether these patterns of remodeling of the fracture callus in mice can be explained by mechanical loading. Morphologies of fractures after 21, 28, and 42 days of healing were determined from an in vivo mid-diaphyseal femoral osteotomy healing experiment in mice. Bone density distributions from microCT at 21 days were converted into adaptive finite element models. To assess the effect of loading mode on bone remodeling, a well-established remodeling algorithm was used to examine the effect of axial force or bending moment on bone structure. All simulations predicted that under axial loading, the callus remodeled to form a single cortex. When a bending moment was applied, dual concentric cortices developed in all simulations, corresponding well to the progression of remodeling observed experimentally and resulting in quantitatively comparable callus areas of woven and lamellar bone. Effects of biological differences between species or other reasons cannot be excluded, but this study demonstrates how a difference in loading mode could explain the differences between the remodeling phase in small rodents and larger mammals. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27: 664,672, 2009 [source] MicroCT evaluation of normal and osteoarthritic bone structure in human knee specimensJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 1 2003Vikas Patel Abstract Although trabecular bone structure has been evaluated, variation with knee compartment and depth from joint surface is not completely understood. Cadaver knees were evaluated with microcomputed tomography analysis for these variations. Objective differences were compared between: medial vs. lateral compartments; femoral vs. tibial bone; and normal vs. arthritic knees. Depth dependent changes in the parameters were observed for the first 6 mm of the cores in normal knees: BV/TV, Tb.N and Conn.D gradually decrease, while Tb.Sp and SMI increase. In the first 6 mm of the normal tibia BV/TV, Tb.N, and Tb.Th are greater than in the femur on both the medial and lateral compartments while Tb.Sp, SMI, and Conn.D are lower. The medial compartment values for BV/TV, Tb.N, Tb.Th and Conn.D are generally greater than for the lateral in both the femur and tibia while Tb.Sp and SMI are lower. In comparison of normal vs. arthritic knees significant differences are observed in the first 6 mm of the medial tibia. With arthritis BV/TV and Tb.Th are lower, while SMI and Tb.Sp are higher. Tb.N and Conn.D show no statistically significant difference. The bone structure variations are, thus, most prominent in the first 6 mm of depth and medial compartment bone is generally more structurally sound than lateral. Severely arthritic bone changes are most prominent in the medial compartment of the tibia and bone structure is less sound in severe arthritis. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source] CHRONIC KIDNEY DISEASE,MINERAL AND BONE DISORDER (CKD-MBD): A NEW TERM FOR A COMPLEX APPROACHJOURNAL OF RENAL CARE, Issue 2009Franti, vára MD SUMMARY The global widespread of the chronic kidney disease (CKD) is a worldwide health problem. Its increasing incidence and prevalence and adverse outcomes (including decreased quality of life, increased morbidity and mortality) represents a huge challenge for all recent health are systems. Reflecting this situation, the new, global initiative (KDIGO) was established to enhance communication and clinical decision-making, promote the use of evidence based medicine and facilitate clinical research. The new definition, evaluation and classification of "renal osteodystrophy"; has been one of the first outcome of this initiative, suggesting the topic of chronic kidney disease,mineral and bone disorder (CKD-MBD) to be a hot problem of recent nephrology. The new terminology is consistent with a recent view on this topic and describes CKD-MBD as a complex syndrome, including abnormal mineral and PTH metabolism, altered bone structure as far as extra-skeletal calcifications. [source] |