Bone Size (bone + size)

Distribution by Scientific Domains


Selected Abstracts


Effect of Environmental Factors and Gender on the Heritability of Bone Mineral Density and Bone Size

ANNALS OF HUMAN GENETICS, Issue 4 2006
M. Y. M. Ng
Summary Bone mineral density (BMD), a risk factor for osteoporosis, is believed to be under genetic control. The effect of environmental factors and gender on the heritability of BMD and bone size is ill-defined. In this study, heritability estimates (h2) were determined in 3,320 southern Chinese subjects from 1,019 families using the variance components model. The h2 for age, weight and height-adjusted BMD was 0.63,0.71 for females, and 0.74,0.79 for males; and for bone size, 0.44,0.64 for females and 0.32,0.86 for males. Adjustment for lifestyle factors including calcium and phytoestrogen intake, exercise, smoking and alcohol consumption altered the h2 differently in males and females. The proportion of variance in BMD and bone size explained by all covariates varied between skeletal sites, but was consistently greater in females than males. A significant gender difference was observed in the genetic variance of BMD and bone size at the hip but not the spine. In conclusion, a gender difference was observed in the degree of heritability of BMD and bone size at specific skeletal sites. Environmental influences contributed variably at different sites in the two sexes. [source]


The shifting trajectory of growth in femur length during gestation

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2010
Åshild Bjørnerem
Abstract Bone size is a determinant of bone strength and tracks in its percentile of origin during childhood and adolescence. We hypothesized that the ranking of an individual's femur length (FL) is established in early gestation and tracks thereafter. Fetal FL was measured serially using 2D ultrasound in 625 Norwegian fetuses. Tracking was assessed using Pearson correlation, a generalized estimating equation model, and by calculating the proportion of fetuses whose FL remained within the same quartile. Baseline FL Z -score (weeks 10 to 19) and later measurements correlated, but more weakly as gestation advanced: r,=,0.59 (weeks 20 to 26); r,=,0.45 (weeks 27 to 33); and r,=,0.32 (weeks 34 to 39) (p,<,0.001). Tracking within the same quartile throughout gestation occurred in 13% of fetuses. Of the 87% deviating, 21% returned to the quartile of origin, so 34% began and ended in the same quartile, 38% deviated by one quartile, and 28% deviated by two or more quartiles by the end of gestation. A standard deviation higher baseline FL Z -score, placental weight (150,g), maternal height (5,cm), and weight (10,kg), was associated with a 0.25, 0.15, 0.10, and 0.05 SD higher FL Z -score at the end of gestation, respectively (p ranging from <0.001 to 0.02). Tracking within the same percentile throughout the whole of gestation, as suggest by growth charts, is uncommon. Deviation from tracking is more common and is the result of changes in growth velocity within and between fetuses and is partly influenced by maternal, fetal, and placental factors. © 2010 American Society for Bone and Mineral Research [source]


Bone Fragility Contributes to the Risk of Fracture in Children, Even After Moderate and Severe Trauma,,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2008
Emma M Clark
Abstract We prospectively examined whether the relationship between skeletal fragility and fracture risk in children 9.9 ± 0.3 (SD) yr is affected by trauma level. Bone size relative to body size and humeral vBMD showed similar inverse relationships with fracture risk, irrespective of whether fractures followed slight or moderate/severe trauma. Introduction: Fracture risk in childhood is related to underlying skeletal fragility. However, whether this relationship is confined to low-trauma fractures or whether skeletal fragility also contributes to the risk of fracture caused by higher levels of trauma is currently unknown. Materials and Methods: Total body DXA scan results obtained at 9.9 yr of age were linked to reported fractures over the following 2 yr in children from the Avon Longitudinal Study of Parents and Children. DXA scan results that were subsequently derived included total body less head (TBLH) bone size relative to body size (calculated from TBLH area adjusted for height and weight) and humeral volumetric BMD (vBMD; derived from subregional analysis at this site). Trauma level was assigned using the Landin classification based on a questionnaire asking about precipitating causes. Results: Of the 6204 children with available data, 549 (8.9%) reported at least one fracture over the follow-up period, and trauma level was assigned in 280 as follows: slight trauma, 56.1%; moderate trauma, 41.0%; severe trauma, 2.9%. Compared with children without fractures, after adjustment for age, sex, socioeconomic status, and ethnicity, children with fractures from both slight and moderate/severe trauma had a reduced bone size relative to body size (1133 cm2 in nonfractured children versus 1112 cm2 for slight trauma fractures, p < 0.001; 1112 cm2 for moderate/severe trauma fractures, p = 0.001) and reduced humeral vBMD (0.494 g/cm3 in nonfractured children versus 0.484 g/cm3 for slight trauma fractures, p = 0.036; and 0.482g/cm3 for moderate/severe trauma fractures, p = 0.016). Conclusions: Skeletal fragility contributes to fracture risk in children, not only in fractures caused by slight trauma but also in those that result from moderate or severe trauma. [source]


Heterogeneity in the Growth of the Axial and Appendicular Skeleton in Boys: Implications for the Pathogenesis of Bone Fragility in Men

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 10 2000
Michelle Bradney
Abstract Men with spine fractures have reduced vertebral body (VB) volume and volumetric bone mineral density (vBMD). Men with hip fractures have reduced femoral neck (FN) volume and vBMD, site-specific deficits that may have their origins in growth. To describe the tempo of growth in regional bone size, bone mineral content (BMC), and vBMD, we measured bone length, periosteal and endocortical diameters, BMC, and vBMD using dual-energy X-ray absorptiometry in 184 boys aged between 7 and 17 years. Before puberty, growth was more rapid in the legs than in the trunk. During puberty, leg growth slowed while trunk length accelerated. Bone size was more advanced than BMC in all regions, being ,70% and ,35% of their predicted peaks at 7 years of age, respectively. At 16 years of age, bone size had reached its adult peak while BMC was still 10% below its predicted peak. The legs accounted for 48%, whereas the spine accounted for 10%, of the 1878 g BMC accrued between 7 and 17 years. Peripubertal growth contributed (i) 55% of the increase in leg length but 78% of the mineral accrued and (ii) 69% of the increase in spine length but 87% of the mineral accrued. Increased metacarpal and midfemoral cortical thickness was caused by respective periosteal expansion with minimal change in the endocortical diameter. Total femur and VB vBMD increased by 30,40% while size and BMC increased by 200,300%. Thus, growth builds a bigger but only slightly denser skeleton. We speculate that effect of disease or a risk factor during growth depends on the regions maturational stage at the time of exposure. The earlier growth of a regions size than mass, and the differing growth patterns from region to region, predispose to site-specific deficits in bone size, vBMD, or both. Regions further from their peak may be more severely affected by illness than those nearer completion of growth. Bone fragility in old age is likely to have its foundations partly established during growth. [source]


Mortality date estimation using fetal pronghorn remains

INTERNATIONAL JOURNAL OF OSTEOARCHAEOLOGY, Issue 1 2008
J. N. Fenner
Abstract Pronghorn (Antilocapra americana) fetal remains are sometimes recovered from archaeological contexts. Pronghorn have consistent reproductive schedules so their remains may provide information on seasonality of site occupation and number of mortality events. To investigate the reliability of fetal remains for seasonality and mortality event assessment, bone size and tooth eruption were measured in a sample of modern fetal pronghorn remains with known mortality dates. Results indicate a strong correlation between bone size and mortality date, but no significant correlation between tooth eruption level and mortality date. Fetal bone size was used to estimate a late April or early May mortality date at both the Oyster Ridge (48UT35) and Trappers Point (48SU1006) archaeological sites. The number of mortality events at Trappers Point was also investigated. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Sexual dimorphism in cortical bone size and strength but not density is determined by independent and time-specific actions of sex steroids and IGF-1: Evidence from pubertal mouse models

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 3 2010
Filip Callewaert
Abstract Although it is well established that males acquire more bone mass than females, the underlying mechanism and timing of this sex difference remain controversial. The aim of this study was to assess the relative contribution of sex steroid versus growth hormone,insulin-like growth factor 1 (GH,IGF-1) action to pubertal bone mass acquisition longitudinally in pubertal mice. Radial bone expansion peaked during early puberty (3 to 5 weeks of age) in male and female mice, with significantly more expansion in males than in females (+40%). Concomitantly, in 5,week old male versus female mice, periosteal and endocortical bone formation was higher (+70%) and lower (,47%), respectively, along with higher serum IGF-1 levels during early puberty in male mice. In female mice, ovariectomy increased radial bone expansion during early puberty as well as the endocortical perimeter. In male mice, orchidectomy reduced radial bone expansion only during late puberty (5 to 8 weeks of age), whereas combined androgen and estrogen deficiency modestly decreased radial bone expansion during early puberty, accompanied by lower IGF-1 levels. GHRKO mice with very low IGF-1 levels, on the other hand, showed limited radial bone expansion and no skeletal dimorphism. From these data we conclude that skeletal sexual dimorphism is established during early puberty and depends primarily on GH,IGF-1 action. In males, androgens and estrogens have stimulatory effects on bone size during late and early puberty, respectively. In females, estrogens limit bone size during early puberty. These longitudinal findings in mice provide strong evidence that skeletal dimorphism is determined by independent and time-specific effects of sex steroids and IGF-1. © 2010 American Society for Bone and Mineral Research [source]


Bone and Muscle Development During Puberty in Girls: A Seven-Year Longitudinal Study,,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 10 2009
Leiting Xu
Abstract The growth of lean mass precedes that of bone mass, suggesting that muscle plays an important role in the growth of bone. However, to date, no study has directly followed the growth of bone and muscle size through puberty and into adulthood. This study aimed to test the hypothesis that the growth of muscle size precedes that of bone size (width and length) and mass during puberty. Bone and muscle properties were measured using pQCT and DXA in 258 healthy girls at baseline (mean age, 11.2 yr) and 1-, 2-, 3,4- and 7-yr follow-up. Growth trends as a function of time relative to menarche were determined from prepuberty to early adulthood for tibial length (TL), total cross-sectional area (tCSA), cortical CSA (cCSA), total BMC (tBMC), cortical volumetric BMD (cBMD), and muscle CSA (mCSA) in hierarchical models. The timings of the peak growth velocities for these variables were calculated. Seventy premenopausal adults, comprising a subset of the girl's mothers (mean age, 41.5 yr), were included for comparative purposes. In contrast to our hypothesis, the growth velocity of mCSA peaked 1 yr later than that of tibial outer dimensions (TL and tCSA) and slightly earlier than tBMC. Whereas TL ceased to increase 2 yr after menarche, tCSA, cCSA, tBMC, and mCSA continued to increase and were still significantly lower than adult values at the age of 18 yr (all p < 0.01). The results do not support the view that muscle force drives the growth of bone size during puberty. [source]


A Bivariate Whole Genome Linkage Study Identified Genomic Regions Influencing Both BMD and Bone Structure,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2008
Xiao-Gang Liu
Abstract Areal BMD (aBMD) and areal bone size (ABS) are biologically correlated traits and are each important determinants of bone strength and risk of fractures. Studies showed that aBMD and ABS are genetically correlated, indicating that they may share some common genetic factors, which, however, are largely unknown. To study the genetic factors influencing both aBMD and ABS, bivariate whole genome linkage analyses were conducted for aBMD-ABS at the femoral neck (FN), lumbar spine (LS), and ultradistal (UD)-forearm in a large sample of 451 white pedigrees made up of 4498 individuals. We detected significant linkage on chromosome Xq27 (LOD = 4.89) for LS aBMD-ABS. In addition, we detected suggestive linkages at 20q11 (LOD = 3.65) and Xp11 (LOD = 2.96) for FN aBMD-ABS; at 12p11 (LOD = 3.39) and 17q21 (LOD = 2.94) for LS aBMD-ABS; and at 5q23 (LOD = 3.54), 7p15 (LOD = 3.45), Xq27 (LOD = 2.93), and 12p11 (LOD = 2.92) for UD-forearm aBMD-ABS. Subsequent discrimination analyses indicated that quantitative trait loci (QTLs) at 12p11 and 17q21 may have pleiotropic effects on aBMD and ABS. This study identified several genomic regions that may contain QTLs important for both aBMD and ABS. Further endeavors are necessary to follow these regions to eventually pinpoint the genetic variants affecting bone strength and risk of fractures. [source]


Bone Fragility Contributes to the Risk of Fracture in Children, Even After Moderate and Severe Trauma,,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2008
Emma M Clark
Abstract We prospectively examined whether the relationship between skeletal fragility and fracture risk in children 9.9 ± 0.3 (SD) yr is affected by trauma level. Bone size relative to body size and humeral vBMD showed similar inverse relationships with fracture risk, irrespective of whether fractures followed slight or moderate/severe trauma. Introduction: Fracture risk in childhood is related to underlying skeletal fragility. However, whether this relationship is confined to low-trauma fractures or whether skeletal fragility also contributes to the risk of fracture caused by higher levels of trauma is currently unknown. Materials and Methods: Total body DXA scan results obtained at 9.9 yr of age were linked to reported fractures over the following 2 yr in children from the Avon Longitudinal Study of Parents and Children. DXA scan results that were subsequently derived included total body less head (TBLH) bone size relative to body size (calculated from TBLH area adjusted for height and weight) and humeral volumetric BMD (vBMD; derived from subregional analysis at this site). Trauma level was assigned using the Landin classification based on a questionnaire asking about precipitating causes. Results: Of the 6204 children with available data, 549 (8.9%) reported at least one fracture over the follow-up period, and trauma level was assigned in 280 as follows: slight trauma, 56.1%; moderate trauma, 41.0%; severe trauma, 2.9%. Compared with children without fractures, after adjustment for age, sex, socioeconomic status, and ethnicity, children with fractures from both slight and moderate/severe trauma had a reduced bone size relative to body size (1133 cm2 in nonfractured children versus 1112 cm2 for slight trauma fractures, p < 0.001; 1112 cm2 for moderate/severe trauma fractures, p = 0.001) and reduced humeral vBMD (0.494 g/cm3 in nonfractured children versus 0.484 g/cm3 for slight trauma fractures, p = 0.036; and 0.482g/cm3 for moderate/severe trauma fractures, p = 0.016). Conclusions: Skeletal fragility contributes to fracture risk in children, not only in fractures caused by slight trauma but also in those that result from moderate or severe trauma. [source]


Habitual Levels of Physical Activity Influence Bone Mass in 11-Year-Old Children From the United Kingdom: Findings From a Large Population-Based Cohort,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2007
Jon H Tobias MD
Abstract We examined the influence of habitual levels of physical activity on bone mass in childhood by studying the relationship between accelerometer recordings and DXA parameters in 4457 11-year-old children. Physical activity was positively related to both BMD and bone size in fully adjusted models. However, further exploration revealed that this effect on bone size was modified by fat mass. Introduction: Exercise interventions have been reported to increase bone mass in children, but it is unclear whether levels of habitual physical activity also influence skeletal development. Materials and Methods: We used multivariable linear regression to analyze associations between amount of moderate and vigorous physical activity (MVPA), derived from accelerometer recordings for a minimum of 3 days, and parameters obtained from total body DXA scans in 4457 11-year-old boys and girls from the Avon Longitudinal Study of Parents and Children. The influence of different activity intensities was also studied by stratification based on lower and higher accelerometer cut-points for moderate (3600 counts/minute) and vigorous (6200 counts/minute) activity, respectively. Results: MVPA was positively associated with lower limb BMD and BMC adjusted for bone area (aBMC; p < 0.001, adjusted for age, sex, socio-economic factors, and height, with or without additional adjustment for lean and fat mass). MVPA was inversely related to lower limb bone area after adjusting for height and lean mass (p = 0.01), whereas a positive association was observed when fat mass was also adjusted for (p < 0.001). Lower limb BMC was positively related to MVPA after adjusting for height and lean and fat mass (p < 0.001), whereas little relationship was observed after adjusting for height and lean mass alone (p = 0.1). On multivariable regression analysis using the fully adjusted model, moderate activity exerted a stronger influence on lower limb BMC compared with light activity (light activity: 2.9 [1.2,4.7, p = 0.001]; moderate activity: 13.1 [10.6,15.5, p < 0.001]; regression coefficients with 95% confidence intervals and p values). Conclusions: Habitual levels of physical activity in 11-year-old children are related to bone size and BMD, with moderate activity exerting the strongest influence. The effect on bone size (as reflected by DXA-based measures of bone area) was modified by adjustment for fat mass, such that decreased fat mass, which is associated with higher levels of physical activity, acts to reduce bone size and thereby counteract the tendency for physical activity to increase bone mass. [source]


Childhood Fractures Are Associated With Decreased Bone Mass Gain During Puberty: An Early Marker of Persistent Bone Fragility?,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2006
Serge L Ferrari MD
Abstract Whether peak bone mass is low among children with fractures remains uncertain. In a cohort of 125 girls followed over 8.5 years, 42 subjects reported 58 fractures. Among those, BMC gain at multiple sites and vertebral bone size at pubertal maturity were significantly decreased. Hence, childhood fractures may be markers of low peak bone mass acquisition and persistent skeletal fragility. Introduction: Fractures in childhood may result from a deficit in bone mass accrual during rapid longitudinal growth. Whether low bone mass persists beyond this period however remains unknown. Materials and Methods: BMC at the spine, radius, hip, and femur diaphysis was prospectively measured over 8.5 years in 125 girls using DXA. Differences in bone mass and size between girls with and without fractures were analyzed using nonparametric tests. The contribution of genetic factors was evaluated by mother-daughter correlations and that of calcium intake by Cox proportional hazard models. Results: Fifty-eight fractures occurred in 42 among 125 girls (cumulative incidence, 46.4%), one-half of all fractures affecting the forearm and wrist. Girls with and without fractures had similar age, height, weight. and calcium intake at all time-points. Before and during early puberty, BMC and width of the radius diaphysis was lower in the fracture compared with no-fracture group (p < 0.05), whereas aBMD and BMAD were similar in the two groups. At pubertal maturity (Tanner's stage 5, mean age ± SD, 16.4 ± 0.5 years), BMC at the ultradistal radius (UD Rad.), femur trochanter, and lumbar spine (LS), and LS projected bone area were all significantly lower in girls with fractures. Throughout puberty, BMC gain at these sites was also decreased in the fracture group (LS, ,8.0%, p = 0.015; UD Rad., ,12.0%, p = 0.004; trochanter, ,8.4%, p = 0.05 versus no fractures). BMC was highly correlated between prepuberty and pubertal maturity (R = 0.54,0.81) and between mature daughters and their mothers (R = 0.32,0.46). Calcium intake was not related to fracture risk. Conclusions: Girls with fractures have decreased bone mass gain in the axial and appendicular skeleton and reduced vertebral bone size when reaching pubertal maturity. Taken together with the evidence of tracking and heritability for BMC, these observations indicate that childhood fractures may be markers for low peak bone mass and persistent bone fragility. [source]


Low Skeletal Muscle Mass Is Associated With Poor Structural Parameters of Bone and Impaired Balance in Elderly Men,The MINOS Study,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2005
Pawel Szulc MD
Abstract In 796 men, 50-85 years of age, decreased relative skeletal muscle mass index was associated with narrower bones, thinner cortices, and a consequent decreased bending strength (lower section modulus), as well as with impaired balance and an increased risk of falls. Introduction: In men, appendicular skeletal muscle mass (ASM) is correlated positively with BMC and areal BMD (aBMD). In elderly men, low muscle mass and strength (sarcopenia) is associated with difficulties in daily living activities. The aim of this study was to evaluate if ASM is correlated with bone size, mechanical properties of bones, balance, and risk of falls in elderly men. Materials and Methods: This study used 796 men, 50-85 years of age, belonging to the MINOS cohort. Lifestyle factors were evaluated by standardized questionnaires. Estimates of mechanical bone properties were derived from aBMD measured by DXA. ASM was estimated by DXA. The relative skeletal muscle mass index (RASM) was calculated as ASM/(body height)2.3. Results: After adjustment for age, body size, tobacco smoking, professional physical activity, and 17,-estradiol concentration, RASM was correlated positively with BMC, aBMD, external diameter, and cortical thickness (r = 0.17-0.34, p < 0.0001) but not with volumetric BMD. Consequently, RASM was correlated with section modulus (r = 0.29-0.39, p < 0.0001). Men in the lowest quartile of RASM had section modulus of femoral neck and distal radius lower by 12-18% in comparison with men in the highest quartile of RASM. In contrast, bone width was not correlated with fat mass, reflecting the load of body weight (except for L3), which suggests that the muscular strain may exert a direct stimulatory effect on periosteal apposition. After adjustment for confounding variables, a decrease in RASM was associated with increased risk of falls and of inability to accomplish clinical tests of muscle strength, static balance, and dynamic balance (odds ratio per 1 SD decrease in RASM, 1.31-2.23; p < 0.05-0.001). Conclusions: In elderly men, decreased RASM is associated with narrower bones and thinner cortices, which results in a lower bending strength. Low RASM is associated with impaired balance and with an increased risk of falls in elderly men. It remains to be studied whether low RASM is associated with decreased periosteal apposition and with increased fracture risk in elderly men, and whether the difference in skeletal muscle mass between men and women contributes to the between-sex difference in fracture incidence. [source]


Is Leptin the Link Between Fat and Bone Mass?,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2002
Thierry Thomas Ph.D.
Abstract Recently, leptin has emerged as a potential candidate responsible for protective effects of fat on bone tissue. However, it remains difficult to draw a clear picture of leptin effects on bone metabolism because published data are sometimes conflicting or apparently contradictory. Beyond differences in models or experimental procedures, it is tempting to hypothesize that leptin exerts dual effects depending on bone tissue, skeletal maturity, and/or signaling pathway. Early in life, leptin could stimulate bone growth and bone size through direct angiogenic and osteogenic effects on stromal precursor cells. Later, it may decrease bone remodeling in the mature skeleton, when trabecular bone turnover is high, by stimulating osteoprotegerin (OPG) expression. Leptin negative effects on bone formation effected through central nervous system pathway could counterbalance these peripheral and positive effects, the latter being predominant when the blood-brain barrier permeability decreases or the serum leptin level rises above a certain threshold. Thus, the sex-dependent specificity of the relationship between leptin and bone mineral density (BMD) in human studies could be, at least in part, caused by serum leptin levels that are two- to threefold higher in women than in men, independent of adiposity. Although these hypotheses remain highly speculative and require further investigations, existing studies consistently support the role of leptin as a link between fat and bone. [source]


Bone Mineral Content per Muscle Cross-Sectional Area as an Index of the Functional Muscle-Bone Unit,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2002
Eckhard Schoenau M.D.
Abstract Bone densitometric data often are difficult to interpret in children and adolescents because of large inter- and intraindividual variations in bone size. Here, we propose a functional approach to bone densitometry that addresses two questions: Is bone strength normally adapted to the largest physiological loads, that is, muscle force? Is muscle force adequate for body size? To implement this approach, forearm muscle cross-sectional area (CSA) and bone mineral content (BMC) of the radial diaphysis were measured in 349 healthy subjects from 6 to 19 years of age (183 girls), using peripheral quantitative computed tomography (pQCT). Reference data were established for height-dependent muscle CSA and for the variation with age in the BMC/muscle CSA ratio. These reference data were used to evaluate results from three pediatric patient groups: children who had sustained multiple fractures without adequate trauma (n = 11), children with preterminal chronic renal failure (n = 11), and renal transplant recipients (n = 15). In all three groups mean height, muscle CSA, and BMC were low for age, but muscle CSA was normal for height. In the multiple fracture group and in renal transplant recipients the BMC/muscle CSA ratio was decreased (p < 0.05), suggesting that bone strength was not adapted adequately to muscle force. In contrast, chronic renal failure patients had a normal BMC/muscle CSA ratio, suggesting that their musculoskeletal system was adapted normally to their (decreased) body size. This functional approach to pediatric bone densitometric data should be adaptable to a variety of densitometric techniques. [source]


Adjusting Bone Mass for Differences in Projected Bone Area and Other Confounding Variables: An Allometric Perspective,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2002
Alan M. Nevill B.Sc., Ph.D.
Abstract The traditional method of assessing bone mineral density (BMD; given by bone mineral content [BMC] divided by projected bone area [Ap], BMD = BMC/Ap) has come under strong criticism by various authors. Their criticism being that the projected bone "area" (Ap) will systematically underestimate the skeletal bone "volume" of taller subjects. To reduce the confounding effects of bone size, an alternative ratio has been proposed called bone mineral apparent density [BMAD = BMC/(Ap)3/2]. However, bone size is not the only confounding variable associated with BMC. Others include age, sex, body size, and maturation. To assess the dimensional relationship between BMC and projected bone area, independent of other confounding variables, we proposed and fitted a proportional allometric model to the BMC data of the L2-L4 vertebrae from a previously published study. The projected bone area exponents were greater than unity for both boys (1.43) and girls (1.02), but only the boy's fitted exponent was not different from that predicted by geometric similarity (1.5). Based on these exponents, it is not clear whether bone mass acquisition increases in proportion to the projected bone area (Ap) or an estimate of projected bone volume (Ap)3/2. However, by adopting the proposed methods, the analysis will automatically adjust BMC for differences in projected bone size and other confounding variables for the particular population being studied. Hence, the necessity to speculate as to the theoretical value of the exponent of Ap, although interesting, becomes redundant. [source]


Heterogeneity in the Growth of the Axial and Appendicular Skeleton in Boys: Implications for the Pathogenesis of Bone Fragility in Men

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 10 2000
Michelle Bradney
Abstract Men with spine fractures have reduced vertebral body (VB) volume and volumetric bone mineral density (vBMD). Men with hip fractures have reduced femoral neck (FN) volume and vBMD, site-specific deficits that may have their origins in growth. To describe the tempo of growth in regional bone size, bone mineral content (BMC), and vBMD, we measured bone length, periosteal and endocortical diameters, BMC, and vBMD using dual-energy X-ray absorptiometry in 184 boys aged between 7 and 17 years. Before puberty, growth was more rapid in the legs than in the trunk. During puberty, leg growth slowed while trunk length accelerated. Bone size was more advanced than BMC in all regions, being ,70% and ,35% of their predicted peaks at 7 years of age, respectively. At 16 years of age, bone size had reached its adult peak while BMC was still 10% below its predicted peak. The legs accounted for 48%, whereas the spine accounted for 10%, of the 1878 g BMC accrued between 7 and 17 years. Peripubertal growth contributed (i) 55% of the increase in leg length but 78% of the mineral accrued and (ii) 69% of the increase in spine length but 87% of the mineral accrued. Increased metacarpal and midfemoral cortical thickness was caused by respective periosteal expansion with minimal change in the endocortical diameter. Total femur and VB vBMD increased by 30,40% while size and BMC increased by 200,300%. Thus, growth builds a bigger but only slightly denser skeleton. We speculate that effect of disease or a risk factor during growth depends on the regions maturational stage at the time of exposure. The earlier growth of a regions size than mass, and the differing growth patterns from region to region, predispose to site-specific deficits in bone size, vBMD, or both. Regions further from their peak may be more severely affected by illness than those nearer completion of growth. Bone fragility in old age is likely to have its foundations partly established during growth. [source]


Race and sex differences and contribution of height: A study on bone size in healthy Caucasians and Chinese

AMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 5 2005
Yuan-Yuan Zhang
Osteoporosis is characterized by a loss of bone strength, of which bone size (BS) is an important determinant. However, studies on the factors determining BS are relatively few. The present study evaluated the independent effects of height, age, weight, sex, and race on areal BS at the hip and spine, measured by dual-energy X-ray absorptiometry, while focusing on the differential contributions of height to BS across sex, race, and skeletal site. The subjects were aged 40 years or older, including 763 Chinese (384 males and 379 females) from Shanghai, People's Republic of China, and 424 Caucasians (188 males and 236 females) from Omaha, Nebraska. Basically, Caucasians had significantly larger BS than Chinese. After adjusting for height, age, and weight, the Chinese had similar spine BS, but significantly larger intertrochanter BS in both sexes and larger total hip BS in females compared with Caucasians. Males had significantly larger BS than females before and after adjustment in both ethnic groups. The effects of age, weight, and race varied, depending on skeletal site. As expected, height had major effects on BS variation in both sexes and races. Height tended to account for larger BS variation at the spine than at the hip (except for Chinese females), and larger BS variation in Caucasians than in Chinese of the same sex (except for the trochanter in females). We conclude that height is a major predictor for BS, and its contributions vary across sex, race, and skeletal site. Am. J. Hum. Biol. 17:568,575, 2005. © 2005 Wiley-Liss, Inc. [source]


Genetic, geographic, and environmental correlates of human temporal bone variation

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 3 2007
Heather F. Smith
Abstract Temporal bone shape has been shown to reflect molecular phylogenetic relationships among hominoids and offers significant morphological detail for distinguishing taxa. Although it is generally accepted that temporal bone shape, like other aspects of morphology, has an underlying genetic component, the relative influence of genetic and environmental factors is unclear. To determine the impact of genetic differentiation and environmental variation on temporal bone morphology, we used three-dimensional geometric morphometric techniques to evaluate temporal bone variation in 11 modern human populations. Population differences were investigated by discriminant function analysis, and the strength of the relationships between morphology, neutral molecular distance, geographic distribution, and environmental variables were assessed by matrix correlation comparisons. Significant differences were found in temporal bone shape among all populations, and classification rates using cross-validation were relatively high. Comparisons of morphological distances to molecular distances based on short tandem repeats (STRs) revealed a significant correlation between temporal bone shape and neutral molecular distance among Old World populations, but not when Native Americans were included. Further analyses suggested a similar pattern for morphological variation and geographic distribution. No significant correlations were found between temporal bone shape and environmental variables: temperature, annual rainfall, latitude, or altitude. Significant correlations were found between temporal bone size and both temperature and latitude, presumably reflecting Bergmann's rule. Thus, temporal bone morphology appears to partially follow an isolation by distance model of evolution among human populations, although levels of correlation show that a substantial component of variation is unexplained by factors considered here. Am J Phys Anthropol 2007. © 2007 Wiley-Liss, Inc. [source]


Assessment of Bone Mineralization Following Renal Transplantation in Children: Limitations of DXA and the Confounding Effects of Delayed Growth and Development

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 3 2001
Mary B. Leonard
Pediatric renal transplantation recipients have numerous risk factors for decreased bone mass, including the underlying renal disease, nutritional deficits, decreased physical activity, inflammation and exposure to steroid therapy. The assessment of bone mineralization in children following renal transplantation is fraught with difficulty. Dual energy x-ray absorptiometry (DXA) is the most commonly employed tool to assess bone mineralization. However, DXA has important limitations in children and in individuals with renal disease. This brief review will examine the expected gains in bone size and bone mass during growth and the mechanisms by which renal failure and steroid therapy interrupt these process. In addition, the limitations of DXA for detecting impaired bone mineralization in children with renal disease are reviewed and alternative approaches explored. [source]


Effect of Environmental Factors and Gender on the Heritability of Bone Mineral Density and Bone Size

ANNALS OF HUMAN GENETICS, Issue 4 2006
M. Y. M. Ng
Summary Bone mineral density (BMD), a risk factor for osteoporosis, is believed to be under genetic control. The effect of environmental factors and gender on the heritability of BMD and bone size is ill-defined. In this study, heritability estimates (h2) were determined in 3,320 southern Chinese subjects from 1,019 families using the variance components model. The h2 for age, weight and height-adjusted BMD was 0.63,0.71 for females, and 0.74,0.79 for males; and for bone size, 0.44,0.64 for females and 0.32,0.86 for males. Adjustment for lifestyle factors including calcium and phytoestrogen intake, exercise, smoking and alcohol consumption altered the h2 differently in males and females. The proportion of variance in BMD and bone size explained by all covariates varied between skeletal sites, but was consistently greater in females than males. A significant gender difference was observed in the genetic variance of BMD and bone size at the hip but not the spine. In conclusion, a gender difference was observed in the degree of heritability of BMD and bone size at specific skeletal sites. Environmental influences contributed variably at different sites in the two sexes. [source]


Musculoskeletal abnormalities of the tibia in juvenile rheumatoid arthritis

ARTHRITIS & RHEUMATISM, Issue 3 2007
Elena M. O. Felin
Objective To characterize local bone geometry, density, and strength, using peripheral quantitative computed tomography (pQCT), compared with general bone characteristics as measured using dual x-ray absorptiometry (DXA), and to assess their relationship to disease-related factors in children with juvenile rheumatoid arthritis (JRA). Methods Forty-eight children ages 4,18 years with JRA (17 pauciarticular, 23 polyarticular, 8 systemic) were compared with age-matched healthy controls (n = 266). Measurements included cortical and trabecular bone geometry, density, and strength at the distal and midshaft tibia determined by pQCT, and whole-body, lumbar spine, and femoral neck measurements by DXA. Results Methotrexate (MTX) was prescribed to 23 of 48 patients (47.9%) and glucocorticoids and MTX were prescribed to 15 of 48 patients (31.3%), with the greatest use in children with systemic JRA. All JRA patients had decreased tibia trabecular bone density, cortical bone size and strength, and muscle mass. Children with systemic JRA had lower femoral neck densities. Systemic JRA was associated with a shorter, less mineralized skeleton, while a narrower, less mineralized skeleton was observed in polyarticular JRA. The tibia diaphysis was narrower with decreased muscle mass, but normal, size-adjusted bone mineral in all subtypes indicated a localized effect of JRA on bone. Patients exposed to glucocorticoids and MTX or to glucocorticoids or MTX alone had greatly reduced trabecular density, cortical bone geometry properties, and bone mineral content, muscle mass, and bone strength. Conclusion Children with JRA have decreased skeletal size, muscle mass, trabecular bone density, cortical bone geometry, and strength. Not surprisingly, these bone abnormalities are more pronounced in children with greater disease severity. [source]


Normative dual energy X-ray absorptiometry data in Swedish children and adolescents

ACTA PAEDIATRICA, Issue 7 2010
Gayani Alwis
Abstract Aim:, To present normative dual energy X-ray absorptiometry data in healthy young Swedes. Methods:, Included were 710 girls and 759 boys aged 6,30 years from southern Sweden. Bone mineral content, bone mineral density, bone size, lean body and fat mass were measured by dual energy X-ray absorptiometry in total body, lumbar spine, hip, arms and legs. Results:, Swedish children had similar bone mass to children in the Netherlands but higher than children in Canada and Korea. Height, weight, bone mass, bone size and lean mass increased at a constant rate from age 6 until the rapid increase in all traits at puberty. The pubertal growth spurt started earlier in girls than in boys, while the spurt in boys was larger in magnitude and occurred for a longer period. Around one-quarter of the adult total body and lumbar spine peak bone mineral content was gained during the 2 years with the fastest gain in both genders. Conclusion:, This study presents normative bone mass data in Swedish children, data that are similar to that in Dutch children but higher than in Canadian and Korean children. The gain in Swedish children seems to mimic the gain seen in children in other settings. [source]


Volumetric bone mineral density is an important tool when interpreting bone mineralization in healthy children

ACTA PAEDIATRICA, Issue 2 2009
Susanne Eriksson
Abstract In adults, it is well known that gender influences bone mass, but studies in children have shown contradictory results. Also, conflicting results have been reported regarding bone mineral density in obese children. Objective: To investigate bone parameters in healthy 8-year-old children and relate them to anthropometry and self-reported physical activity (PA). Design: Bone measurements were performed with dual X-ray absorptiometry in 96 children, and questionnaires were used to assess self-reported PA. Results: Bone mineral content and density differed by gender. Eighteen percent of the children were overweight/obese and they had higher bone mineral content and density than children with normal weight. Bone mineral apparent density (g/cm3) of the lumbar spine did not differ, since the vertebral size differed, as was also the case between genders. Self-reported weight-bearing PA influenced bone mass in the hip. Conclusion: PA influenced bone mineralization at this age. The differences in bone mineral content and density in healthy children would mainly be explained by the differences in bone size, reflected in body height and the width of the vertebrae. This indicates the importance of determining volumetric bone mineralization in children. [source]