| |||
Bone Mineralization (bone + mineralization)
Selected AbstractsBone Mineralization and Osteoblast Differentiation Are Negatively Modulated by Integrin ,v,3JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2001Su-Li Cheng Abstract Numerous bone matrix proteins can interact with ,v-containing integrins including ,v,3. To elucidate the net effects of the interaction between these proteins and ,v,3 on osteoblast function, we developed a murine osteoblastic cell line that overexpressed human ,v,3. Human ,v,3-integrin was expressed on cell membrane, in which its presence did not alter the surface level of endogenous mouse ,v,3. The expressed human ,v,3 was functional because cell adhesion to osteopontin was increased and this increment was abolished by antibody against human ,v,3. The proliferation rate of cells overexpressing ,v,3 (,v,3-cells) was increased whereas matrix mineralization was decreased. To elucidate the mechanisms leading to inhibition of matrix mineralization, the expression of proteins important for mineralization was analyzed. Alkaline phosphatase activity and the expression of osteocalcin, type I collagen, and bone sialoprotein (BSP) were decreased whereas osteopontin was stimulated in ,v,3-cells. The regulation of osteopontin, osteocalcin, and BSP expression was mediated via transcriptional mechanism because their promoter activities were altered. Examination of molecules involved in integrin signaling indicated that activator protein-1 (AP-1) and extracellular signal-regulated kinase (Erk) activities were enhanced whereas c-jun N -terminal kinase (JNK) activity was decreased in ,v,3-cells. The activity of p38 and the levels of focal adhesion kinase (FAK) and vinculin were not altered. Moreover, the adhesions of ,v,3-cells to type I collagen and fibronectin were inhibited, which was attributed to decreased ,1-integrin levels on cell surface. In conclusion, overexpressing ,v,3-integrin in osteoblasts stimulated cell proliferation but retarded differentiation, which were derived via altered integrin-matrix interactions, signal transduction, and matrix protein expression. [source] Assessment of Bone Mineralization Following Renal Transplantation in Children: Limitations of DXA and the Confounding Effects of Delayed Growth and DevelopmentAMERICAN JOURNAL OF TRANSPLANTATION, Issue 3 2001Mary B. Leonard Pediatric renal transplantation recipients have numerous risk factors for decreased bone mass, including the underlying renal disease, nutritional deficits, decreased physical activity, inflammation and exposure to steroid therapy. The assessment of bone mineralization in children following renal transplantation is fraught with difficulty. Dual energy x-ray absorptiometry (DXA) is the most commonly employed tool to assess bone mineralization. However, DXA has important limitations in children and in individuals with renal disease. This brief review will examine the expected gains in bone size and bone mass during growth and the mechanisms by which renal failure and steroid therapy interrupt these process. In addition, the limitations of DXA for detecting impaired bone mineralization in children with renal disease are reviewed and alternative approaches explored. [source] Effect of dietary protein level and source on bone mineralization in ratsBIOFACTORS, Issue 1-4 2004M. A. Gralak Abstract Bone mineralization was studied in rats. Animals were divided into three feeding groups: LCP - diet with 13.5% crude protein in DM (5% of gluten, 10% of casein), HCP - diet with 21.2% CP in DM (8% of gluten, 10% of casein), and LSM - diet based on grain meals and meat-bone meal (21% CP in DM). After 28 days feeding, animals were euthanased by cervical dislocation and femur bones were collected, weighed and kept frozen until analyses. Diets with 21% protein (HCP, LSM) significantly increased weight of femur bones. Despite of the substantially higher ash level (7.1%) in the LSM diet than in the LCP diet (3.4%), rats of both groups had the similar bone concentration of Ca (15.7 ± 1.1 vs. 17.4 ± 1.1 g/kg) and Zn (178.7 ± 7.9 vs. 173.0 ± 8.5 mg/kg). However bone density in LSM rats was significantly higher than in LCP ones. Although rats fed HCP diet had intermediate bone density, the bone concentration of Ca (11.4 ± 0.5 g/kg) and Zn (145.1 ± 2.9 mg/kg) was significantly lower, than in animals fed LCP and LSM diets. This was related to the very wide protein/calcium (37:1 g/g) and protein/zinc (5.3:1 g/mg) ratios in HCP diet. Those ratios were narrowest in the LSM diet: 16.2:1 (CP/Ca) and 2.6:1 (CP/Zn). It can be conluded that protein/mineral ratio in a diet is a very important factor in bone development, besides dietary protein and ash contents itselves. [source] Pharmacologic profile of zoledronic acid: A highly potent inhibitor of bone resorptionDRUG DEVELOPMENT RESEARCH, Issue 4 2002Jonathan R. Green Abstract Bisphosphonates are effective in treating benign and malignant skeletal diseases characterized by enhanced osteoclastic bone resorption (i.e., osteoporosis, Paget's disease, tumor-induced osteolysis). The nitrogen-containing bisphosphonate pamidronate is currently the standard treatment for hypercalcemia of malignancy (HCM) and skeletal complications of bone metastases. Zoledronic acid, a novel nitrogen-containing bisphosphonate with an imidazole substituent, has demonstrated more potent inhibition of osteoclast-mediated bone resorption than all other bisphosphonates, including pamidronate, in both in vitro and in vivo preclinical models. Zoledronic acid inhibited ovariectomy-induced bone loss in adult monkeys and rats, and long-term treatment prevented skeletal turnover and subsequent bone loss, reduced cortical porosity, and increased mechanical strength. Zoledronic acid also significantly inhibited bone loss associated with arthritis, bone metastases, and prosthesis loosening. The increased potency of zoledronic acid vs. pamidronate has been demonstrated clinically: zoledronic acid (4 or 8 mg iv) was superior to pamidronate (90 mg iv) in normalizing corrected serum calcium in patients with HCM. In patients with bone metastases, low doses of zoledronic acid (, 2 mg) suppressed bone resorption markers , 50% below baseline, whereas pamidronate 90 mg yielded only 20 to 30% suppression. Importantly, the increased potency of zoledronic acid is not associated with an increased incidence of local (bone) or systemic adverse events. Zoledronic acid does not impair bone mineralization and, compared with pamidronate, has a greater renal and intestinal tolerability therapeutic index. Thus, based on preclinical assays and clinical data, zoledronic acid is the most potent bisphosphonate tested to date. Given its potency and excellent safety profile, zoledronic acid is now poised to become the new standard of treatment for HCM and metastatic bone disease. Drug Dev. Res. 55:210,224, 2002. © 2002 Wiley-Liss, Inc. [source] Development of renal bone diseaseEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 2006A. Ferreira Abstract Renal osteodystrophy (ROD) develops as the early stages of chronic renal failure (CRF) and covers a spectrum of bone changes observed in the uraemic patient, which extend from high remodelling bone disease (frequently known as osteitis fibrosa) to low turnover, or adynamic disease. Between these two extremes there are also cases of bone mineralization compromised in variable degrees, as is the case of ,mixed bone disease' and osteomalacia. The dynamic process of bone remodelling is compromised in CRF, and a positive or negative bone balance can be observed in uraemic patients. In addition to the classic modulators of bone remodelling, like parathyroid hormone, calcitriol and calcitonin, other factors were recently identified as significant modulators of osteoblast and osteoclast activation in uraemic patients. In fact, different cytokines and growth factors, acting at an autocrine or paracrine level, seem to play a relevant role in the bone and mineral changes observed in uraemia. Recently, observations have been made of the development of more sensitive and specific techniques to assay different biochemical markers of bone turnover and mineral metabolism. Analogously, new contributions of conventional bone histology, bone immunocytochemistry and molecular biology, which enabled the understanding of some etiopathogenic mechanisms of ROD, were observed. [source] Report on the vitamin D status of adult and pediatric patients with inflammatory bowel disease and its significance for bone health and diseaseINFLAMMATORY BOWEL DISEASES, Issue 12 2006Helen M. Pappa MD Abstract Vitamin D is a hormone responsible for calcium homeostasis and essential for bone mineralization throughout the lifespan. Recent studies revealed a high prevalence of hypovitaminosis D among healthy adults and children, especially in the northern hemisphere, and a link between this condition and suboptimal bone health. Moreover, maintenance of what are today considered optimal vitamin D stores has not been achieved throughout the year with currently recommended daily intake for vitamin D. The prevalence of hypovitaminosis D is even higher among adults with inflammatory bowel disease (IBD), a situation that may be caused by malabsorption and gastrointestinal losses through an inflamed intestine, among other factors. In children with IBD, existing reports of vitamin D status are scarce. The relationship between vitamin D status and bone health, although well-established in healthy adults and children, has been controversial among adults and children with IBD, and the reasons for this have not been investigated to date. Studies in animal models of colitis and in vitro human studies support a role of vitamin D in the regulation of the immune system of the gut and the potential of vitamin D and its derivatives as therapeutic adjuncts in the treatment of IBD. This role of vitamin D has not been investigated with translational studies to date. Currently, there are no guidelines for monitoring vitamin D status, treating hypovitaminosis D, and maintaining optimal vitamin D stores in patients with IBD. These tasks may prove particularly difficult because of malabsorption and gastrointestinal losses that are associated with IBD. [source] Double staining protocol for developing European sea bass (Dicentrarchus labrax) larvaeJOURNAL OF APPLIED ICHTHYOLOGY, Issue 2 2010M. J. Darias Summary The alcian blue-alizarin red technique was successfully adjusted to stain developing European sea bass (Dicentrarchus labrax) larvae. For an optimal staining protocol design both larval size and their morphological characteristics at each developmental stage were considered, since such parameters notably influence the staining of tissues. The incubation times of the different solutions were adjusted to allow the stain penetration for revealing the integrity of cartilaginous and bony tissues without significant tissue degradation. Three developmental windows were determined for an optimal staining procedure: (i) 4.5,6.4 mm, (ii) 6.7,8.7 mm, and (iii) 12.8,15.5 mm total length (TL). In order to validate the continuity of staining along the larval development, quantification of bone mineralization and osteocalcin gene expression were also monitored. Quantitative analysis revealed that ossification followed an exponential kinetic that was positively correlated with the osteocalcin gene expression pattern (Rs = 0.9762, P < 0.05). The mineralized tissue increased from 6.4 mm TL onwards, corresponding with the detection of the first ossified structures. The quantity of bony tissue increased gradually until 7.6 mm TL, since mineralization remained limited to the skull. From 8.3 to 15.5 mm TL, the mineralized bone was notable and nearly concerned the whole larval skeleton (skull, vertebral column and caudal complex). Since it was possible to detect the first cartilaginous and mineralized structures in specimens as small as 4.5 and 6.4 mm TL, respectively, this procedure is a useful tool to study the European sea bass skeletal ontogenesis, to precociously diagnose skeletal malformations in small larvae and eventually to better characterize the effect of different environmental and/or nutritional factors on the ossification status of specific skeletal components. [source] Effects of vegetable feed ingredients on bone health in Atlantic salmonJOURNAL OF APPLIED ICHTHYOLOGY, Issue 2 2010P. G. Fjelldal Summary The aim of the present study was to examine if dietary inclusion of vegetable lipids (VL) and proteins (VP) influenced markers of bone health in Atlantic salmon. Triplicate groups were fed one of four different diets; 100% fish protein (FP) and fish lipids (FL) (FPFL), 80% VP and 35% VL (80VP35VL), 40% VP and 70% VL (40VP70VL), or 80% VP and 70% VL (80VP70VL) for 12 months on-growth in sea water. Fish were analyzed for vertebral bone mineralization (mineral content, as % of bone dry weight), vertebral deformities (radiology), vertebral bone mRNA expression of factors involved in mineralization (bone gla protein, bgp) and growth regulation (igf-I and growth hormone receptor), as well as plasma vitamin D metabolites. The fish grew from 0.35 to 4 kg during the experimental period. At the end of the experiment, significantly lower prevalence of fish with one or more deformed vertebrae was observed in the 80VP70VL group (11%) compared to the other groups (33,43%). There was a significant higher relative expression of igf -I mRNA in vertebral bone of fish fed the 80VP70VL diet compared to control fish (FPFL), while the other genes studied were unaffected. Elevated plasma 25-hydroxyvitamin D3 recorded in the marine feed group is discussed as a predictor for later development of bone deformities. In conclusion, the present study shows that high inclusion levels of vegetable lipids and proteins may have a positive effect on bone health in Atlantic salmon postsmolts. [source] Histomorphometrical studies of vertebral bone condition in farmed rainbow trout, Oncorhynchus mykissJOURNAL OF APPLIED ICHTHYOLOGY, Issue 2 2010M.-H. Deschamps Summary A major problem for the fish farming industry is to find reliable indicators of bone condition that could help to prevent vertebral abnormalities. Here, we summarize the main results of two recent studies aiming to assess the variation of two vertebral bone variables (bone mineralization and vertebral total bone area) during rainbow trout grow-out in several French farms. We provide evidence for a wide range of variation for these parameters and for the occurrence of vertebral bone abnormalities, and new data on vertebral structure in trout reared either in various fish farms (influence of rearing conditions) or at different temperatures (influence of various growth rates). Although further experiments are needed to understand bone metabolism in trout, these findings increase our knowledge on growth and modelling of vertebrae, and provide valuable data that will enable comparisons in the future. [source] Calcium Channel TRPV6 Is Involved in Murine Maternal,Fetal Calcium Transport,,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2008Yoshiro Suzuki Abstract Maternal,fetal calcium (Ca2+) transport is crucial for fetal Ca2+ homeostasis and bone mineralization. In this study, the physiological significance of the transient receptor potential, vanilloid 6 (TRPV6) Ca2+ channel in maternal,fetal Ca2+ transport was investigated using Trpv6 knockout mice. The Ca2+ concentration in fetal blood and amniotic fluid was significantly lower in Trpv6 knockout fetuses than in wildtypes. The transport activity of radioactive Ca2+ (45Ca) from mother to fetuses was 40% lower in Trpv6 knockout fetuses than in wildtypes. The ash weight was also lower in Trpv6 knockout fetuses compared with wildtype fetuses. TRPV6 mRNA and protein were mainly localized in intraplacental yolk sac and the visceral layer of extraplacental yolk sac, which are thought to be the places for maternal,fetal Ca2+ transport in mice. These expression sites were co-localized with calbindin D9K in the yolk sac. In wildtype mice, placental TRPV6 mRNA increased 14-fold during the last 4 days of gestation, which coincides with fetal bone mineralization. These results provide the first in vivo evidence that TRPV6 is involved in maternal,fetal Ca2+ transport. We propose that TRPV6 functions as a Ca2+ entry pathway, which is critical for fetal Ca2+ homeostasis. [source] Calcium Channel TRPV6 Expression in Human Duodenum: Different Relationships to the Vitamin D System and Aging in Men and Women,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2006FRCP, Julian RF Walters MA Abstract Intestinal absorption of calcium affects bone mineralization and varies greatly. In human duodenum, expression of the calcium channel TRPV6 was directly related to blood 1,25-dihydroxyvitamin D in men, but effects of age with lower median vitamin D receptor levels were more significant in women. Introduction: The TRPV6 calcium channel/transporter is implicated in animal studies of intestinal calcium absorption, but in humans, its role and relationship to differences in mineral metabolism is unclear. We aimed to characterize TRPV6 expression in human intestine including defining relationships to the vitamin D endocrine system. Materials and Methods: TRPV6 transcript expression was determined in endoscopic mucosal biopsies obtained from normal duodenum. Expression was compared with that in ileum and with in situ hybridization in archival tissues and related to sequence variants in genomic DNA. TRPV6 expression was related in 33 subjects to other transcripts involved in calcium absorption including the vitamin D receptor (VDR) and to blood vitamin D metabolites including 1,25-dihydroxyvitamin D [1,25(OH)2D]. Results: TRPV6 transcripts were readily detected in duodenum but not in ileum. Expression was highest in villous epithelial cells. Sequence variants in the coding and upstream regions of the gene did not affect TRPV6 expression. The relationship between duodenal TRPV6 expression and 1,25(OH)2D differed in men and women. In men, linear regression showed a strong association with 1,25(OH)2D (r = 0.87, p < 0.01), which was unaffected by age. In women, there was no significant overall relationship with 1,25(OH)2D, but there was a significant decrease with age (r = ,0.69, p < 0.001). Individual expression of TRPV6 and VDR was significantly correlated. The group of older women (>50) had lower median levels of both TRPV6 and VDR transcripts than younger women (p < 0.001 and 0.02, respectively). Conclusions: Duodenal TRPV6 expression is vitamin D dependent in men, but not in older women, where expression of TRPV6 and VDR are both reduced. These findings can explain, at least in part, the lower fractional calcium absorption seen in older postmenopausal women. [source] Treatment of Idiopathic Hyperphosphatasia With Intensive Bisphosphonate TherapyJOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2004Tim Cundy MD Abstract In a family with IH, a rare high turnover bone disease, two older siblings were wheelchair-bound with severe skeletal deformity by age 15. Their youngest affected sibling was treated intensively with intravenous bisphosphonates for 3 years. The treatment was well tolerated and prevented the development of deformity and disability. Introduction: Idiopathic hyperphosphatasia (IH, also known as juvenile Paget's disease) is a rare genetic bone disease characterized by very high bone turnover and progressive bony deformity. Inhibitors of bone resorption have been used to suppress bone turnover in the short term, but there is no published data on long-term efficacy. Materials and Methods: An 11-year-old girl with IH, who had two severely affected older siblings, presented with progressive deformity and deafness and long bone fractures. Conventional pediatric doses of pamidronate had failed to prevent clinical deterioration or suppress bone turnover completely. Intensive bisphosphonate therapy (frequent 5-mg ibandronate infusions) was given to try and arrest progression of the skeletal disease. Growth and development, pure tone audiometry, biochemistry, radiology, densitometry (DXA), and bone histology were monitored. Results: A total of 45 mg ibandronate was given over 3 years until skeletal maturity was reached (20, 15, and 10 mg for years 1,3, respectively). Ibandronate treatment was well tolerated, and biochemical markers of bone turnover suppressed to within the age-appropriate normal range There was some progression of her thoracic kyphosis, but she had no further fractures and remained mobile and active at an age when her siblings had become wheelchair-bound. A significant recovery of hearing (p < 0.01) was documented, particularly at low frequencies. Radiographs showed improvement in spinal osteoporosis and cortical bone dimensions and arrest of progressive acetabular protrusion. Areal bone density increased substantially (lumbar spine z-score from ,2.2 to + 1.8). Tetracycline-labeled bone biopsy specimens were taken before and after 18 months of intensive treatment. The second biopsy showed suppression of bone turnover and a doubling of trabecular thickness, with no mineralization defect, and no osteopetrosis. Conclusions: Intensive bisphosphonate treatment prevented the development of deformity and disability and improved hearing in this child with IH. The dose of bisphosphonate, which is substantially greater than is usually used in pediatric bone disease, had no adverse effects, in particular on bone mineralization. [source] Tryptophan Missense Mutation in the Ligand-Binding Domain of the Vitamin D Receptor Causes Severe Resistance to 1,25-Dihydroxyvitamin D,,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2002T. M. Nguyen Ph.D. Abstract In this study, two related young children, brother and sister, exhibited severe vitamin D-resistant rickets without alopecia. Sequence analysis of the total vitamin D receptor (VDR) cDNA from skin fibroblasts revealed a substitution of the unique tryptophan of the VDR by arginine at amino acid 286 (W286R). Cultured skin fibroblasts of the two patients expressed normal-size VDR protein (immunocytochemistry and Western blotting) and normal length VDR mRNA (Northern blotting). But, these fibroblasts, as well as COS-7 cells transfected with the W286R mutant, failed to bind 3H 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. The tryptophan substitution did not affect VDR trafficking toward the nucleus but abolished the 24-hydroxylase gene response to 1,25(OH)2D3, even at 10,6 M concentrations. In conclusion, this case report of a new family with hereditary vitamin D- resistant rickets (HVDRR) emphasizes the crucial role of the VDR tryptophan for ligand binding and for transactivation of 1,25(OH)2D3 target genes. It clearly shows the clinical significance of this VDR amino acid for calcium homeostasis and bone mineralization. This observation suggests further that the presence of a stable VDR-bound ligand may not be obligatory for normal hair follicle development. [source] Tumors Associated With Oncogenic Osteomalacia Express Genes Important in Bone and Mineral MetabolismJOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2002Suzanne M. Jan De Beur Abstract Oncogenic osteomalacia (OOM) is associated with primitive mesenchymal tumors that secrete phosphaturic factors resulting in low serum concentrations of phosphate and calcitriol, phosphaturia, and defective bone mineralization. To identify overexpressed genes in these tumors, we compared gene expression profiles of tumors resected from patients with OOM and histologically similar control tumors using serial analysis of gene expression (SAGE). Three hundred and sixty-four genes were expressed at least twofold greater in OOM tumors compared with control tumors. A subset of 67 highly expressed genes underwent validation with an extended set of OOM and control tumors using array analysis or reverse-transcription polymerase chain reaction (RT-PCR). Ten of these validated genes were consistently overexpressed in all OOM tumors relative to control tumors. Strikingly, genes with roles in bone matrix formation, mineral ion transport, and bone mineralization were highly expressed in the OOM tumors. [source] Constitutive expression of thrombospondin 1 in MC3T3-E1 osteoblastic cells inhibits mineralizationJOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2006Akemichi Ueno Thrombospondin 1 (TSP1) is a multifunctional extracellular glycoprotein present mainly in the fetal and adult skeleton. Although an inhibitory effect of TSP1 against pathological mineralization in cultured vascular pericytes has been shown, its involvement in physiological mineralization by osteoblasts is still unknown. To determine the role of TSP1 in biomineralization, mouse osteoblastic MC3T3-E1 cells were cultured in the presence of antisense phosphorothioate oligodeoxynucleotides complementary to the TSP1 sequence. The 18- and 24-mer antisense oligonucleotides caused concentration-dependent increases in the number of mineralized nodules, acid-soluble calcium deposition in the cell/matrix layer, and alkaline phosphatase activity within 9 days, without affecting cell proliferation. The corresponding sense or scrambled oligonucleotides did not affect these parameters. In the antisense oligonucleotide-treated MC3T3-E1 cells, thickened extracellular matrix, well-developed cell processes, increased intracellular organelles, and collagen fibril bundles were observed. On the other hand, the addition of TSP1 to the culture decreased the production of a mineralized matrix by MC3T3-E1 cells. Furthermore, MC3T3-E1 clones overexpressing mouse TSP1 were established and assayed for TSP1 protein and their capacity to mineralize. TSP1 dose-dependently inhibited mineralization by these cells both in vitro and in vivo. These results indicate that TSP1 functions as an inhibitory regulator of bone mineralization and matrix production by osteoblasts to sustain bone homeostasis. J. Cell. Physiol. 209: 322,332, 2006. © 2006 Wiley-Liss, Inc. [source] Altered Cbfal expression and biomineralization in an osteosarcoma cell lineJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 2 2004H. Perinpanayagam Abstract Osteoblast differentiation and expression are regulated by Cbfal transcription factors. Recent evidence suggests that Cbfal may also regulate bone mineralization. The purpose of this study was to characterize Cbfal expression in relation to mineralization in rat UMR106-01 osteoblastic cell cultures. UMR106-01 BSP cultures consistently form bone-like mineral, whereas the UI subclone mineralize gradually. BSP and UI cultures were grown for 48 h and then treated with ,-glycerophosphate. BSP cultures had alizarin red stained calcifications and mineral-like deposits within 24 h of phosphate. Atomic absorption spectroscopy measured significantly (P < 0.0001) more calcium in the phosphate-treated BSP cultures than in the UI. Cbfal message was detected in the BSP and UI cultures, but the Cbfal N-terminal isoform was deficient in UI and appeared to be up-regulated in the phosphate-treated BSP cultures. Cbfal protein levels were also reduced in the UI. DNA sequence from the RT-PCR products was utilized to design Taqman Real-time RT-PCR reagents. Quantitative Real-time RT-PCR analysis showed that Cbfal mRNA levels relative to endogenous 18 s rRNA were lower in the slower mineralizing UI cultures. Furthermore, the Cbfal N-terminal isoform mRNA levels were significantly (P < 0.001) lower in the slower mineralizing cultures. Transfection with Cbfal or isoform antisense caused a significant (P < 0.001) reduction in mineralization. Therefore, Cbfal expression may be associated with bone-like mineral formation in rat UMR106-01 osteoblastic cell cultures. © 2003 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved. [source] Severe perinatal hypophosphatasia due to homozygous deletion of T at nucleotide 1559 in the tissue nonspecific alkaline phosphatase genePRENATAL DIAGNOSIS, Issue 9 2003Hideaki Sawai Abstract Objectives Hypophosphatasia is an inherited disorder characterized by defective bone mineralization and deficiency of tissue nonspecific alkaline phosphatase (TNSALP) activity. This disorder is caused by various mutations in the TNSALP gene. We report here hypophosphatasia in two siblings, both of them severely affected by the perinatal (lethal) type. Methods We diagnosed the first infant by clinical and radiologic manifestations, and laboratory findings. Laboratory findings were characterized by deficiency of serum alkaline phosphatase. Both parents and the second infant were then analyzed by molecular techniques. Results The radiograph of the first infant showed severe hypomineralization of the skeleton. Molecular analysis of the second infant showed that this condition was caused by a homozygous single T nucleotide deletion at cDNA number 1559 (1559delT). Both parents were heterozygous carriers for this mutation, although they were not consanguineous. Conclusion This mutation has been frequently found in Japanese hypophosphatasia patients, but this is the first observation of a homozygous deletion. This report shows that homozygosity for the 1559delT mutation of the TNSALP gene results in a severe lethal phenotype. Copyright © 2003 John Wiley & Sons, Ltd. [source] Structural studies of human alkaline phosphatase in complex with strontium: Implication for its secondary effect in bonesPROTEIN SCIENCE, Issue 7 2006Paola Llinas Abstract Strontium is used in the treatment of osteoporosis as a ranelate compound, and in the treatment of painful scattered bone metastases as isotope. At very high doses and in certain conditions, it can lead to osteomalacia characterized by impairment of bone mineralization. The osteomalacia symptoms resemble those of hypophosphatasia, a rare inherited disorder associated with mutations in the gene encoding for tissue-nonspecific alkaline phosphatase (TNAP). Human alkaline phosphatases have four metal binding sites,two for zinc, one for magnesium, and one for calcium ion,that can be substituted by strontium. Here we present the crystal structure of strontium-substituted human placental alkaline phosphatase (PLAP), a related isozyme of TNAP, in which such replacement can have important physiological implications. The structure shows that strontium substitutes the calcium ion with concomitant modification of the metal coordination. The use of the flexible and polarizable force-field TCPEp (topological and classical polarization effects for proteins) predicts that calcium or strontium has similar interaction energies at the calcium-binding site of PLAP. Since calcium helps stabilize a large area that includes loops 210,228 and 250,297, its substitution by strontium could affect the stability of this region. Energy calculations suggest that only at high doses of strontium, comparable to those found for calcium, can strontium substitute for calcium. Since osteomalacia is observed after ingestion of high doses of strontium, alkaline phosphatase is likely to be one of the targets of strontium, and thus this enzyme might be involved in this disease. [source] Assessment of Bone Mineralization Following Renal Transplantation in Children: Limitations of DXA and the Confounding Effects of Delayed Growth and DevelopmentAMERICAN JOURNAL OF TRANSPLANTATION, Issue 3 2001Mary B. Leonard Pediatric renal transplantation recipients have numerous risk factors for decreased bone mass, including the underlying renal disease, nutritional deficits, decreased physical activity, inflammation and exposure to steroid therapy. The assessment of bone mineralization in children following renal transplantation is fraught with difficulty. Dual energy x-ray absorptiometry (DXA) is the most commonly employed tool to assess bone mineralization. However, DXA has important limitations in children and in individuals with renal disease. This brief review will examine the expected gains in bone size and bone mass during growth and the mechanisms by which renal failure and steroid therapy interrupt these process. In addition, the limitations of DXA for detecting impaired bone mineralization in children with renal disease are reviewed and alternative approaches explored. [source] Osteoprotegerin Plasma Levels are Strongly Associated with Polymorphisms in Human Homologue of the Mouse Progressive Ankylosis (ANKH) GeneANNALS OF HUMAN GENETICS, Issue 3 2007Y. Vistoropsky Summary Osteoprotegerin inhibits osteoclastogenesis and plays an important role in the control of bone resorption. However, the genetic mechanisms underlying regulation of OPG levels are currently not fully elucidated. The aim of the present study was to determine whether the ANKH gene, which plays a central role in bone mineralization, contributes to the genetic regulation of OPG levels. A family-based association study used a sample of 159 ethnically homogeneous nuclear families, comprising 556 apparently healthy individuals. Statistical analyses included family aggregation analysis of OPG variation and four types of transmission disequilibrium tests. Each individual was genotyped for 11 SNPs in the ANKH gene. Four TDTs consistently showed a highly significant association between OPG levels and the intronic SNP rs875525 located between exons 6 and 7. The combined p-value for four tests to reject the null hypothesis of no association was 0.0003. Furthermore, haplotypes generated between rs875525 and two additional neighbouring SNPs (rs2291943 and rs2288474) also revealed a significant association with OPG plasma levels (p < 10,4 -10,3). ANKH genetic polymorphisms in the area between SNP rs2291943 and rs2288474 are strongly associated with OPG plasma levels. The molecular mechanism underlying this association is not obvious, and therefore these results should be regarded cautiously until they are confirmed in independent studies. [source] Supplementation of dietary minerals during the early seawater phase increase vertebral strength and reduce the prevalence of vertebral deformities in fast-growing under-yearling Atlantic salmon (Salmo salar L.) smoltAQUACULTURE NUTRITION, Issue 4 2009P.G. FJELLDAL Abstract An earlier study demonstrated that under-yearling (0+) Atlantic salmon (Salmo salar L.) smolt had a lower vertebral mineral content and mechanical strength and higher prevalence of vertebral deformities than 1+ smolt during the early seawater (SW) phase. The present study aimed to examine if commercial extruded high-energy diets need to be supplemented additional minerals for proper bone mineralization and prevention of bone deformities in fast growing 0 + smolts. We studied vertebral morphology with radiology, and bone mineral content and mechanical strength in 60 g 0+ smolt fed diets with a normal (NM) or elevated (HM) bone mineral (P and Ca) contents from SW transfer (week 0) until 10 times weight increase at week 17. Thereafter, both groups were fed a commercial diet until a mean slaughter weight of 4100 g after 57 week. There were no differences in body weight and length between the dietary groups during the study, while the condition factor differed significantly at the final sampling (NM 1.40; HM 1.29). The most common bone deformity observed was compressions in the tail region of the vertebral column. Lower incidences of vertebral deformities (percent individuals with one or more deformed vertebrae) was observed in the HM group in week 17 (HM 20%; NM 47%) and week 57 (HM 37%; NM 73%), also reflected by higher vertebral length/dorso-ventral diameter ratio in weeks 17 (HM 0.99; MN 0.92) and 57 (HM 0.97; NM 0.88). The HM group had significantly higher vertebral mineral content (HM 550 g kg,1; NM 480 g kg,1) and mechanical strength (HM 9050 g mm,1; NM 4600 g mm,1) than the NM group after 8 week feeding. Plasma levels of Ca, P and D-vitamin metabolites recorded in week 8 reflected changes in P homeostasis, but could not explain the preventive effect of the HM diet on development of bone deformities. The results suggest that elevated dietary mineral content during the early SW phase may reduce the prevalence of vertebral deformities in fast growing 0 + salmon smolts. [source] Effect of supplemental phytase on growth, phosphorus digestibility and bone mineralization of common carp (Cyprinus carpio L)AQUACULTURE RESEARCH, Issue 10 2007Lawrence C Nwanna Abstract The effect of dietary phytase on phosphorus (P) digestibility, growth, bone mineralization and plasma P of common carp (Cyprinus carpio) was investigated. Five diets, D0, DP, PHYT1, PHYT2 and PHYT4, were used. D0 contained no supplement. DP was supplemented with 2.6 g P (Na2HPO4× 2H2O) kg,1. PHYT1, PHYT2 and PHYT4 comprised 1000, 2000 and 4000 U phytase [Ronozyme P (CT)] kg,1. D0, PHYT1, PHYT2, PHYT4 had average of 7.95 g P kg,1; DP contained 10.3 g P kg,1. After 126 days of feeding, fish grew from 115 to 347 g (D0), 583.7 g (DP), 352.6 g (PHYT1), 393.3 g (PHYT2) and 406.4 g (PHYT4). Addition of phytase significantly increased daily feed intake, but only led to a marginal improvement in the weight gain, SGR and FCR of fish fed PHYT2 and PHYT4 compared with fish fed D0. Fish fed DP showed the best (P<0.05) growth performances. Fish fed DP and PHYT4 significantly digested dietary P more than the fish fed D0. Fish fed D0, PHYT1, PHYT2 and PHYT4 retained higher (P<0.05) Zn in their bones than fish fed DP. However, there was no further effect on bone mineralization. Plasma P scarcely improved by between 14% and 26% in fish fed PHYT2 and PHYT4 relative to fish fed D0. P concentration of the faeces was reduced by about 9,22% in fish fed PHYT1 and PHYT4 compared with fish fed D0. [source] Glucocorticoid-induced bone loss in mice can be reversed by the actions of parathyroid hormone and risedronate on different pathways for bone formation and mineralizationARTHRITIS & RHEUMATISM, Issue 11 2008Wei Yao Objective Glucocorticoid excess decreases bone mineralization and microarchitecture and leads to reduced bone strength. Both anabolic (parathyroid hormone [PTH]) and antiresorptive agents are used to prevent and treat glucocorticoid-induced bone loss, yet these bone-active agents alter bone turnover by very different mechanisms. This study was undertaken to determine how PTH and risedronate alter bone quality following glucocorticoid excess. Methods Five-month-old male Swiss-Webster mice were treated with the glucocorticoid prednisolone (5 mg/kg in a 60-day slow-release pellet) or placebo. From day 28 to day 56, 2 groups of glucocorticoid-treated animals received either PTH (5 ,g/kg) or risedronate (5 ,g/kg) 5 times per week. Bone quality and quantity were measured using x-ray tomography for the degree of bone mineralization, microfocal computed tomography for bone microarchitecture, compression testing for trabecular bone strength, and biochemistry and histomorphometry for bone turnover. In addition, real-time polymerase chain reaction (PCR) and immunohistochemistry were performed to monitor the expression of several key genes regulating Wnt signaling (bone formation) and mineralization. Results Compared with placebo, glucocorticoid treatment decreased trabecular bone volume (bone volume/total volume [BV/TV]) and serum osteocalcin, but increased serum CTX and osteoclast surface, with a peak at day 28. Glucocorticoids plus PTH increased BV/TV, and glucocorticoids plus risedronate restored BV/TV to placebo levels after 28 days. The average degree of bone mineralization was decreased after glucocorticoid treatment (,27%), but was restored to placebo levels after treatment with glucocorticoids plus risedronate or glucocorticoids plus PTH. On day 56, RT-PCR revealed that expression of genes that inhibit bone mineralization (Dmp1 and Phex) was increased by continuous exposure to glucocorticoids and glucocorticoids plus PTH and decreased by glucocorticoids plus risedronate, compared with placebo. Wnt signaling antagonists Dkk-1, Sost, and Wif1 were up-regulated by glucocorticoid treatment but down-regulated after glucocorticoid plus PTH treatment. Immunohistochemistry of bone sections showed that glucocorticoids increased N-terminal Dmp-1 staining while PTH treatment increased both N- and C-terminal Dmp-1 staining around osteocytes. Conclusion Our findings indicate that both PTH and risedronate improve bone mass, degree of bone mineralization, and bone strength in glucocorticoid-treated mice, and that PTH increases bone formation while risedronate reverses the deterioration of bone mineralization. [source] Low vitamin K status is associated with osteoarthritis in the hand and knee,ARTHRITIS & RHEUMATISM, Issue 4 2006Tuhina Neogi Objective Poor intake of vitamin K is common. Insufficient vitamin K can result in abnormal cartilage and bone mineralization. Furthermore, osteophyte growth, seen in osteoarthritis (OA), may be a vitamin K,dependent process. We undertook this study to determine whether vitamin K deficiency is associated with radiographic features of OA. Methods We conducted an analysis among 672 participants (mean age 65.6 years, 358 women) in the Framingham Offspring Study, a population-based prospective observational cohort. Levels of plasma phylloquinone (the primary form of vitamin K) had previously been measured in these participants, for whom we also had bilateral hand and knee radiographs. The main outcomes were 1) prevalence ratios (PRs) of OA, osteophytes, and joint space narrowing (JSN) per quartile of plasma phylloquinone level for each joint, adjusting for correlated joints using generalized estimating equations, and 2) adjusted mean number of joints with each feature per quartile of plasma phylloquinone level. Analyses were conducted in hands and knees separately and adjusted for age, sex, body mass index, total energy intake, plasma vitamin D, and femoral neck bone mineral density. Results The PRs for OA, osteophytes, and JSN and adjusted mean number of joints with all 3 features in the hand decreased significantly with increasing plasma phylloquinone levels (P , 0.03 for all). For example, as plasma phylloquinone levels rose, the PR for hand OA decreased from 1.0 to 0.7 (P = 0.005). For the knee, only the PR for osteophytes and the adjusted mean number of knee joints with osteophytes decreased significantly with increasing plasma phylloquinone levels (PR decreased from 1.0 to 0.6, P = 0.01). Conclusion These observational data support the hypothesis of an association between low plasma levels of vitamin K and increased prevalence of OA manifestations in the hand and knee. [source] Effect of dietary protein level and source on bone mineralization in ratsBIOFACTORS, Issue 1-4 2004M. A. Gralak Abstract Bone mineralization was studied in rats. Animals were divided into three feeding groups: LCP - diet with 13.5% crude protein in DM (5% of gluten, 10% of casein), HCP - diet with 21.2% CP in DM (8% of gluten, 10% of casein), and LSM - diet based on grain meals and meat-bone meal (21% CP in DM). After 28 days feeding, animals were euthanased by cervical dislocation and femur bones were collected, weighed and kept frozen until analyses. Diets with 21% protein (HCP, LSM) significantly increased weight of femur bones. Despite of the substantially higher ash level (7.1%) in the LSM diet than in the LCP diet (3.4%), rats of both groups had the similar bone concentration of Ca (15.7 ± 1.1 vs. 17.4 ± 1.1 g/kg) and Zn (178.7 ± 7.9 vs. 173.0 ± 8.5 mg/kg). However bone density in LSM rats was significantly higher than in LCP ones. Although rats fed HCP diet had intermediate bone density, the bone concentration of Ca (11.4 ± 0.5 g/kg) and Zn (145.1 ± 2.9 mg/kg) was significantly lower, than in animals fed LCP and LSM diets. This was related to the very wide protein/calcium (37:1 g/g) and protein/zinc (5.3:1 g/mg) ratios in HCP diet. Those ratios were narrowest in the LSM diet: 16.2:1 (CP/Ca) and 2.6:1 (CP/Zn). It can be conluded that protein/mineral ratio in a diet is a very important factor in bone development, besides dietary protein and ash contents itselves. [source] Volumetric bone mineral density is an important tool when interpreting bone mineralization in healthy childrenACTA PAEDIATRICA, Issue 2 2009Susanne Eriksson Abstract In adults, it is well known that gender influences bone mass, but studies in children have shown contradictory results. Also, conflicting results have been reported regarding bone mineral density in obese children. Objective: To investigate bone parameters in healthy 8-year-old children and relate them to anthropometry and self-reported physical activity (PA). Design: Bone measurements were performed with dual X-ray absorptiometry in 96 children, and questionnaires were used to assess self-reported PA. Results: Bone mineral content and density differed by gender. Eighteen percent of the children were overweight/obese and they had higher bone mineral content and density than children with normal weight. Bone mineral apparent density (g/cm3) of the lumbar spine did not differ, since the vertebral size differed, as was also the case between genders. Self-reported weight-bearing PA influenced bone mass in the hip. Conclusion: PA influenced bone mineralization at this age. The differences in bone mineral content and density in healthy children would mainly be explained by the differences in bone size, reflected in body height and the width of the vertebrae. This indicates the importance of determining volumetric bone mineralization in children. [source] Pre- and post-discharge feeding of very preterm infants: impact on growth and bone mineralizationCLINICAL PHYSIOLOGY AND FUNCTIONAL IMAGING, Issue 4 2003Sangita Kurl Summary In this prospective study we examined (1) how the nutritional status of very preterm infants, judged by growth measures and biochemical values, evolved during the initial hospitalization; (2) the effect of feeding on growth after discharge from hospital; and (3) the risk factors associated with low lumbar bone mineral content (BMC) later in infancy. Sixty-four former preterm infants had their lumbar spine (L2,L4) BMC assessed by dual energy X-ray absorptiometry when they weighed between 5 and 7 kg. Predicted BMC values were calculated based on our previously reported reference lumbar BMC data. These values were used to convert the preterm infants' BMC values into percentages. The extremely preterm group (gestational age ,28 weeks) had significantly more respiratory morbidity and longer duration of hospital stay than the more mature infants. Both groups developed growth retardation and malnutrition during the hospital stay. Exclusive breastfeeding after discharge from hospital supported linear catch-up growth and weight gain but was associated with a 7·0 (1·2,41·7)-fold risk of having low BMC values. The other factors associated with the risk of having low BMC values later in infancy were low serum phosphate levels at 6 weeks, with a 7·8 (1·6,37·0)-fold risk, and male gender, with a 4·3 (1·2,16·1)-fold risk. Appropriately designed interventional studies are needed to improve the growth and nutrition of these infants during initial hospitalization. In order to improve the postdischarge nutrition, we suggest that the amount and duration of multicomponent human milk fortification should be studied further to provide individualized nutrition throughout the catch-up growth period until the end of the first year of life. [source] |