| |||
Bone Marrow Cavity (bone + marrow_cavity)
Selected AbstractsrBMP represses Wnt signaling and influences skeletal progenitor cell fate specification during bone repairJOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2010Steve Minear Abstract Bone morphogenetic proteins (BMPs) participate in multiple stages of the fetal skeletogenic program from promoting cell condensation to regulating chondrogenesis and bone formation through endochondral ossification. Here, we show that these pleiotropic functions are recapitulated when recombinant BMPs are used to augment skeletal tissue repair. In addition to their well-documented ability to stimulate chondrogenesis in a skeletal injury, we show that recombinant BMPs (rBMPs) simultaneously suppress the differentiation of skeletal progenitor cells in the endosteum and bone marrow cavity to an osteoblast lineage. Both the prochondrogenic and antiosteogenic effects are achieved because rBMP inhibits endogenous ,-catenin-dependent Wnt signaling. In the injured periosteum, this repression of Wnt activity results in sox9 upregulation; consequently, cells in the injured periosteum adopt a chondrogenic fate. In the injured endosteum, rBMP also inhibits Wnt signaling, which results in the runx2 and collagen type I downregulation; consequently, cells in this region fail to differentiate into osteoblasts. In muscle surrounding the skeletal injury site, rBMP treatment induces Smad phosphorylation followed by exuberant cell proliferation, an increase in alkaline phosphatase activity, and chondrogenic differentiation. Thus different populations of adult skeletal progenitor cells interpret the same rBMP stimulus in unique ways, and these responses mirror the pleiotropic effects of BMPs during fetal skeletogenesis. These mechanistic insights may be particularly useful for optimizing the reparative potential of rBMPs while simultaneously minimizing their adverse outcomes. © 2010 American Society for Bone and Mineral Research [source] Aged Mice Require Full Transcription Factor, Runx2/Cbfa1, Gene Dosage for Cancellous Bone Regeneration After Bone Marrow Ablation,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2004Kunikazu Tsuji Abstract Runx2 is prerequisite for the osteoblastic differentiation in vivo. To elucidate Runx2 gene functions in adult bone metabolism, we conducted bone marrow ablation in Runx2 heterozygous knockout mice and found that aged (but not young) adult Runx2 heterozygous knockout mice have reduced new bone formation capacity after bone marrow ablation. We also found that bone marrow cells from aged Runx2 heterozygous knockout mice have reduced ALP+ colony-forming potential in vitro. This indicates that full Runx2 dosage is needed for the maintenance of osteoblastic activity in adult mice. Introduction: Null mutation of the Runx2 gene results in total loss of osteoblast differentiation, and heterozygous Runx2 deficiency causes cleidocranial dysplasia in humans and mice. However, Runx2 gene functions in adult bone metabolism are not known. We therefore examined the effects of Runx2 gene function in adult mice with heterozygous loss of the Runx2 gene. Materials and Methods: Bone marrow ablation was conducted in young adult (2.5 ± 0.5 months old) or aged adult (7.5 ± 0.5 months old) Runx2 heterozygous knockout mice and wildtype (WT) littermates. Cancellous bone regeneration was evaluated by 2D ,CT. Results: Although new bone formation was observed after bone marrow ablation in the operated bone marrow cavity of WT mice, such bone formation was significantly reduced in Runx2 heterozygous knockout mice. Interestingly, this effect was observed specifically in aged but not young adult mice. Runx2 heterozygous deficiency in aged mice significantly reduced the number of alkaline phosphatase (ALP)+ cell colonies in the bone marrow cell cultures, indicating a reduction in the numbers of osteoprogenitor cells. Such effects of heterozygous Runx2 deficiency on osteoblasts in vitro was specific to the cells from aged adult mice, and it was not observed in the cultures of marrow cells from young adult mice. Conclusion: These results indicate that full gene dosage of Runx2 is required for cancellous bone formation after bone marrow ablation in adult mice. [source] Local ex vivo gene therapy with bone marrow stromal cells expressing human BMP4 promotes endosteal bone formation in miceTHE JOURNAL OF GENE MEDICINE, Issue 1 2004Xiao S. Zhang Abstract Background Bone loss in osteoporosis is caused by an imbalance between resorption and formation on endosteal surfaces of trabecular and cortical bone. We investigated the feasibility of increasing endosteal bone formation in mice by ex vivo gene therapy with bone marrow stromal cells (MSCs) transduced with a MLV-based retroviral vector to express human bone morphogenetic protein 4 (BMP4). Methods We assessed two approaches for administering transduced MSCs. ,-Galactosidase (,-Gal) transduced C57BL/6J mouse MSCs were injected intravenously via tail vein or directly injected into the femoral bone marrow cavity of non-marrow-ablated syngenic recipient mice and bone marrow cavity engraftment was assessed. BMP4- or ,-Gal-transduced cells were injected into the femoral bone marrow cavity and effects on bone were evaluated by X-ray, peripheral quantitative computed tomography (pQCT), and histology. Results After tail-vein injection less than 20% of recipient mice contained ,-Gal-positive donor cells in femur, humerus or vertebra marrow cavities combined, and in these mice only 0.02,0.29% of injected cells were present in the bone marrow. In contrast, direct intramedullary injection was always successful and an average of 2% of injected cells were present in the injected femur marrow cavity 24 hours after injection. Numbers of donor cells decreased over the next 14 days. Intramedullary injection of BMP4-transduced MSCs induced bone formation. Trabecular bone mineral density (BMD) determined by pQCT increased 20.5% at 14 days and total BMD increased 6.5% at 14 days and 10.4% at 56 days. Conclusions The present findings support the feasibility of using ex vivo MSC-based retroviral gene therapy to induce relatively sustained new bone formation, with normal histological appearance, at endosteal bone sites. Copyright © 2004 John Wiley & Sons, Ltd. [source] Development of Galanin-Containing Nerve Fibres in Rat TibiaANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 2 2009M. Gajda Summary Galanin exerts tonic inhibition of nociceptive input to the central nervous system. Recently, this peptide was demonstrated in several neuronal and non-neuronal structures in bones and joints. In this study, the time of appearance and topographic localization of galanin-containing nerve fibres in bone were studied in rats from gestational day 16 (GD16) to postnatal day 21 (PD21). The tibia was chosen as a model of developing long bone and indirect immunofluorescence combined with confocal laser scanning microscopy was used to identify galanin-immunoreactive (GAL-IR) nerve fibres. The earliest, sparse GAL-IR fibres were observed on GD21 in the perichondrium of both epiphyses and in the periosteum of the diaphysis. From PD1 onwards, GAL-IR fibres were also seen in the bone marrow cavity and in the region of the inter-condylar eminence of the knee joint. Intramedullary GAL-IR fibres in proximal and distal metaphyses appeared around PD1. Some of them accompanied blood vessels, although free fibres were also seen. GAL-IR fibres located in the cartilage canals of both epiphyses were observed from PD7, in the secondary ossification centres from PD10 and in the bone marrow of both epiphyses from PD14. The time course and localization of galanin-containing nerve fibres resemble the development of substance P- and CGRP-expressing nerve fibres, thus suggesting their sensory origin. [source] |