Bone Histomorphometry (bone + histomorphometry)

Distribution by Scientific Domains


Selected Abstracts


Comparison Insight Bone Measurements by Histomorphometry and ,CT,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2005
Daniel Chappard MD
Abstract Morphometric analysis of 70 bone biopsies was done in parallel by ,CT and histomorphometry. ,CT provided higher results for trabecular thickness and separation because of the 3D shape of these anatomical objects. Introduction: Bone histomorphometry is used to explore the various metabolic bone diseases. The technique is done on microscopic 2D sections, and several methods have been proposed to extrapolate 2D measurements to the 3D dimension. X-ray ,CT is a recently developed imaging tool to appreciate 3D architecture. Recently the use of 2D histomorphometric measurements have been shown to provide discordant results compared with 3D values obtained directly. Material and Methods: Seventy human bone biopsies were removed from patients presenting with metabolic bone diseases. Complete bone biopsies were examined by ,CT. Bone volume (BV/TV), Tb.Th, and Tb.Sp were measured on the 3D models. Tb.Th and Tb.Sp were measured by a method based on the sphere algorithm. In addition, six images were resliced and transferred to an image analyzer: bone volume and trabecular characteristics were measured after thresholding of the images. Bone cores were embedded undecalcified; histological sections were prepared and measured by routine histomorphometric methods providing another set of values for bone volume and trabecular characteristics. Comparison between the different methods was done by using regression analysis, Bland-Altman, Passing-Bablock, and Mountain plots. Results: Correlations between all parameters were highly significant, but ,CT overestimated bone volume. The osteoid volume had no influence in this series. Overestimation may have been caused by a double threshold used in ,CT, giving trabecular boundaries less well defined than on histological sections. Correlations between Tb.Th and Tb.Sp values obtained by 3D or 2D measurements were lower, and 3D analysis always overestimated thickness by ,50%. These increases could be attributed to the 3D shape of the object because the number of nodes and the size of the marrow cavities were correlated with 3D values. Conclusion: In clinical practice, ,CT seems to be an interesting method providing reliable morphometric results in less time than conventional histomorphometry. The correlation coefficient is not sufficient to study the agreement between techniques in histomorphometry. The architectural descriptors are influenced by the algorithms used in 3D. [source]


Immunosuppression with FK506 Increases Bone Induction in Demineralized Isogeneic and Xenogeneic Bone Matrix in the Rat

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2000
Dr. Gregor Voggenreiter
Abstract The aim of the present study was to investigate a systemic induction of bone formation in rats by immunosuppression with FK506 (1 mg/kg body weight intraperitoneally [ip]) in a model of osteoinduction of isogeneic and xenogeneic demineralized bone matrix (DBM) for a period of 28 days. In particular, alterations of in vitro cytokine synthesis and changes of lymphocyte subsets were studied. DBM was implanted intramuscularly in the abdominal wall of Lewis rats (seven per group). Blood was sampled on days ,7, 0, 7, and 28 for determination of in vitro tumor necrosis factor , (TNF-,) synthesis and lymphocyte subsets by flow cytometry (CD3+, CD4+, CD8+, CD45+, ED9+, and Ia+ antibodies). Ossicles of de novo formed bone and the tibias were removed on day 28 after double tetracycline labeling for histomorphometric analysis. Immunosuppression with FK506 significantly decreased lipopolysaccharide (LPS)-stimulated in vitro cytokine synthesis after 7 days and 28 days (p < 0.05). Compared with control animals FK506 treatment significantly increased the volume of induced bone in isogeneic (2.1 ± 0.3 mm3 vs. 10.8 ± 0.9 mm3) and xenogeneic (0 mm3 vs. 4.7 ± 0.8 mm3) DBM. Bone histomorphometry of the tibias revealed that immunosuppression increased both bone formation and bone resorption, accompanied by a significant reduction in the relative trabecular area (Tb.Ar). FK506 caused a decrease in the counts of CD8+ T cells probably because of destruction or dislocation of these cells. This suggests that the amount of CD8+ cells and the degree of T cell activation in terms of mean fluorescence intensity (MFI) may be associated with bone metabolism. In support of this, statistical analysis revealed a significant positive correlation between parameters of bone formation as well as bone resorption and the CD4+/CD8+ ratio. There was a significant negative correlation between parameters of remodeling of the metaphysis of the tibia and induced bone volume (BV), respectively, and MFI values of CD3+/Ia+ cells. These findings suggest an important role of T lymphocytes in bone formation and bone resorption in vivo. FK506 caused a marked increase of bone formation in DBM. However, the conclusion that immunosuppression increases fracture healing warrants further investigation. [source]


Brief communication: Bone remodeling rates in Pleistocene humans are not slower than the rates observed in modern populations: A reexamination of Abbott et al. (1996)

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 2 2010
Margaret Streeter
Abstract Bone histomorphometry has been applied to the lower limb cortical bone of Pleistocene humans to establish age at death and to determine bone remodeling rates (Abbott et al.: Am J Phys Anthropol 226 (1996) 307,313). Both of these procedures require the determination of osteon density and mean osteon size. Previous analyses of Middle and Late Pleistocene human lower limb bones have produced bone remodeling rates that are slower than those determined in a more recent archeological sample. Recalculation of the data reported in Abbott et al.: Am J Phys Anthropol 226 (1996) 307,313) has revealed mathematical errors in the remodeling rates reported for the Pleistocene humans. The corrected remodeling rates for the Pleistocene group are similar to the values obtained in the more recent comparative sample. Am J Phys Anthropol, 2010. © 2009 Wiley-Liss, Inc. [source]


Overexpression of secreted frizzled-related protein 1 inhibits bone formation and attenuates parathyroid hormone bone anabolic effects

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2010
Wei Yao
Abstract Secreted frizzled-related protein 1 (sFRP1) is an antagonist of Wnt signaling, an important pathway in maintaining bone homeostasis. In this study we evaluated the skeletal phenotype of mice overexpressing sFRP1 (sFRP1 Tg) and the interaction of parathyroid hormone (PTH) treatment and sFRP1 (over)expression. Bone mass and microarchitecture were measured by micro-computed tomography (µCT). Osteoblastic and osteoclastic cell maturation and function were assessed in primary bone marrow cell cultures. Bone turnover was assessed by biochemical markers and dynamic bone histomorphometry. Real-time PCR was used to monitor the expression of several genes that regulate osteoblast maturation and function in whole bone. We found that trabecular bone mass measurements in distal femurs and lumbar vertebral bodies were 22% and 51% lower in female and 9% and 33% lower in male sFRP1 Tg mice, respectively, compared with wild-type (WT) controls at 3 months of age. Genes associated with osteoblast maturation and function, serum bone formation markers, and surface based bone formation were significantly decreased in sFRP1 Tg mice of both sexes. Bone resorption was similar between sFRP1 Tg and WT females and was higher in sFRP1 Tg male mice. Treatment with hPTH(1-34) (40,µg/kg/d) for 2 weeks increased trabecular bone volume in WT mice (females: +30% to 50%; males: +35% to 150%) compared with sFRP1 Tg mice (females: +5%; males: +18% to 54%). Percentage increases in bone formation also were lower in PTH-treated sFRP1 Tg mice compared with PTH-treated WT mice. In conclusion, overexpression of sFRP1 inhibited bone formation as well as attenuated PTH anabolic action on bone. The gender differences in the bone phenotype of the sFRP1 Tg animal warrants further investigation. © 2010 American Society for Bone and Mineral Research [source]


Osteoblast Function Is Compromised at Sites of Focal Bone Erosion in Inflammatory Arthritis,,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2009
Nicole C Walsh PhD
Abstract In rheumatoid arthritis (RA), synovial inflammation results in focal erosion of articular bone. Despite treatment attenuating inflammation, repair of erosions with adequate formation of new bone is uncommon in RA, suggesting that bone formation may be compromised at these sites. Dynamic bone histomorphometry was used in a murine model of RA to determine the impact of inflammation on osteoblast function within eroded arthritic bone. Bone formation rates at bone surfaces adjacent to inflammation were similar to those observed in nonarthritic bone; therefore, osteoblast activity is unlikely to compensate for the increased bone resorption at these sites. Within arthritic bone, the extent of actively mineralizing surface was reduced at bone surfaces adjacent to inflammation compared with bone surfaces adjacent to normal marrow. Consistent with the reduction in mineralized bone formation, there was a notable paucity of cells expressing the mid- to late stage osteoblast lineage marker alkaline phosphatase, despite a clear presence of cells expressing the early osteoblast lineage marker Runx2. In addition, several members of the Dickkopf and secreted Frizzled-related protein families of Wnt signaling antagonists were upregulated in arthritic synovial tissues, suggesting that inhibition of Wnt signaling could be one mechanism contributing to impaired osteoblast function within arthritic bone. Together, these data indicate that the presence of inflammation within arthritic bone impairs osteoblast capacity to form adequate mineralized bone, thus contributing to the net loss of bone and failure of bone repair at sites of focal bone erosion in RA. [source]


RANKL Inhibition with Osteoprotegerin Increases Bone Strength by Improving Cortical and Trabecular bone Architecture in Ovariectomized Rats,,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2008
Michael S Ominsky
Abstract Introduction: Ovariectomy (OVX) results in bone loss caused by increased bone resorption. RANKL is an essential mediator of bone resorption. We examined whether the RANKL inhibitor osteoprotegerin (OPG) would preserve bone volume, density, and strength in OVX rats. Materials and Methods: Rats were OVX or sham-operated at 3 mo of age. Sham controls were treated for 6 wk with vehicle (Veh, PBS). OVX rats were treated with Veh or human OPG-Fc (10 mg/kg, 2/wk). Serum RANKL and TRACP5b was measured by ELISA. BMD of lumbar vertebrae (L1,L5) and distal femur was measured by DXA. Right distal femurs were processed for bone histomorphometry. Left femurs and the fifth lumbar vertebra (L5) were analyzed by ,CT and biomechanical testing, and L6 was analyzed for ash weight. Results: OVX was associated with significantly greater serum RANKL and osteoclast surface and with reduced areal and volumetric BMD. OPG markedly reduced osteoclast surface and serum TRACP5b while completely preventing OVX-associated bone loss in the lumbar vertebrae, distal femur, and femur neck. Vertebrae from OPG-treated rats had increased dry and ash weight, with no significant differences in tissue mineralization versus OVX controls. ,CT showed that trabecular compartments in OVX-OPG rats had significantly greater bone volume fraction, vBMD, bone area, trabecular thickness, and number, whereas their cortical compartments had significantly greater bone area (p < 0.05 versus OVX-Veh). OPG improved cortical area in L5 and the femur neck to levels that were significantly greater than OVX or sham controls (p < 0.05). Biomechanical testing of L5 and femur necks showed significantly greater maximum load values in the OVX-OPG group (p < 0.05 versus OVX-Veh). Bone strength at both sites was linearly correlated with total bone area (r2 = 0.54,0.74, p < 0.0001), which was also significantly increased by OPG (p < 0.05 versus OVX). Conclusions: OPG treatment prevented bone loss, preserved trabecular architecture, and increased cortical area and bone strength in OVX rats. [source]


IGF-I Receptor Is Required for the Anabolic Actions of Parathyroid Hormone on Bone,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2007
Yongmei Wang
Abstract We showed that the IGF-IR,null mutation in mature osteoblasts leads to less bone and decreased periosteal bone formation and impaired the stimulatory effects of PTH on osteoprogenitor cell proliferation and differentiation. Introduction: This study was carried out to examine the role of IGF-I signaling in mediating the actions of PTH on bone. Materials and Methods: Three-month-old mice with an osteoblast-specific IGF-I receptor null mutation (IGF-IR OBKO) and their normal littermates were treated with vehicle or PTH (80 ,g/kg body weight/d for 2 wk). Structural measurements of the proximal and midshaft of the tibia were made by ,CT. Trabecular and cortical bone formation was measured by bone histomorphometry. Bone marrow stromal cells (BMSCs) were obtained to assess the effects of PTH on osteoprogenitor number and differentiation. Results: The fat-free weight of bone normalized to body weight (FFW/BW), bone volume (BV/TV), and cortical thickness (C.Th) in both proximal tibia and shaft were all less in the IGF-IR OBKO mice compared with controls. PTH decreased FFW/BW of the proximal tibia more substantially in controls than in IGF-IR OBKO mice. The increase in C.Th after PTH in the proximal tibia was comparable in both control and IGF-IR OBKO mice. Although trabecular and periosteal bone formation was markedly lower in the IGF-IR OBKO mice than in the control mice, endosteal bone formation was comparable in control and IGF-IR OBKO mice. PTH stimulated endosteal bone formation only in the control animals. Compared with BMSCs from control mice, BMSCs from IGF-IR OBKO mice showed equal alkaline phosphatase (ALP)+ colonies on day 14, but fewer mineralized nodules on day 28. Administration of PTH increased the number of ALP+ colonies and mineralized nodules on days 14 and 28 in BMSCs from control mice, but not in BMSCs from IGF-IR OBKO mice. Conclusions: Our results indicate that the IGF-IR null mutation in mature osteoblasts leads to less bone and decreased bone formation, in part because of the requirement for the IGF-IR in mature osteoblasts to enable PTH to stimulate osteoprogenitor cell proliferation and differentiation. [source]


Effects Of a One-Month Treatment With PTH(1,34) on Bone Formation on Cancellous, Endocortical, and Periosteal Surfaces of the Human Ilium,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2007
Robert Lindsay MD
Abstract Using bone histomorphometry, we found that a 1-month treatment with PTH(1,34) [hPTH(1,34)] stimulated new bone formation on cancellous, endocortical, and periosteal bone surfaces. Enhanced bone formation was associated with an increase in osteoblast apoptosis. Introduction: The precise mechanisms by which hPTH(1,34) increases bone mass and improves bone structure are unclear. Using bone histomorphometry, we studied the early effects of treating postmenopausal women with osteoporosis with hPTH(1,34). Materials and Methods: Tetracycline-labeled iliac crest bone biopsies were obtained from 27 postmenopausal women with osteoporosis who were treated for 1 month with hPTH(1,34), 50 ,g daily subcutaneously. The results were compared with tetracycline-labeled biopsies from a representative control group of 13 postmenopausal women with osteoporosis. Results: The bone formation rate on the cancellous and endocortical surfaces was higher in hPTH(1,34),treated women than in control women by factors of 4.5 and 5.0, respectively. We also showed a 4-fold increase in bone formation rate on the periosteal surface, suggesting that hPTH(1,34) has the potential to increase bone diameter in humans. On the cancellous and endocortical surfaces, the increased bone formation rate was primarily caused by stimulation of formation in ongoing remodeling units, with a modest amount of increased formation on previously quiescent surfaces. hPTH(1,34),stimulated bone formation was associated with an increase in osteoblast apoptosis, which may reflect enhanced turnover of the osteoblast population and may contribute to the anabolic action of hPTH(1,34). Conclusions: These findings provide new insight into the cellular basis by which hPTH(1,34) improves cancellous and cortical bone architecture and geometry in patients with osteoporosis. [source]


Differential Effects of Teriparatide and Alendronate on Bone Remodeling in Postmenopausal Women Assessed by Histomorphometric Parameters,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2005
Monique Arlot MD
Abstract An 18-month randomized double-blind study was conducted in postmenopausal women with osteoporosis to compare the effects of once-daily teriparatide 20 ,g with alendronate 10 mg on bone histomorphometry. Biopsies were obtained from 42 patients. Indices of bone formation were significantly higher after 6 or 18 months of teriparatide compared with alendronate treatment. Introduction: Alendronate and teriparatide increased BMD, assessed by DXA, by different mechanisms of action, supported by changes in biochemical markers of bone turnover. The purpose of this cross-sectional study was to explore the differential effects of these two osteoporosis treatments at the bone tissue level by examining bone histomorphometric parameters of bone turnover after either 6 or 18 months of treatment. Materials and Methods: Patients were a cohort from a randomized parallel double-blind study conducted to compare the effects of once-daily teriparatide 20 ,g and alendronate 10 mg in postmenopausal women with osteoporosis. Transiliac crest bone biopsies were obtained after tetracycline double labeling from 42 patients treated for 6 months (n = 23) or 18 months (n = 14); 5 additional patients were biopsied from contralateral sides at 6 and 18 months. Biopsy specimens adequate for quantitative analysis were analyzed by 2D histomorphometry from 17 patients at 6 months (teriparatide, n = 8; alendronate, n = 9) and 15 patients at 18 months (teriparatide, n = 8; alendronate, n = 7). Data were analyzed by two-sample tests. Results: Histomorphometric indices of bone formation were significantly and markedly greater in the teriparatide group than in the alendronate group at 6 and 18 months, whereas indices of bone resorption were only significantly greater in the teriparatide group than in the alendronate group at 6 months. Bone formation and activation frequency were significantly lower at 18 months compared with 6 months in the teriparatide group, returning to levels comparable with untreated postmenopausal women. In the teriparatide group, the peak in histomorphometric bone formation indices coincided with peak levels for N-terminal propeptide of type I collagen, a biochemical marker of bone formation. The degree of mineralization was lower at 18 months than at 6 months with treatment in both groups but was not different between groups. Conclusions: These results confirm the opposite mechanisms of action of teriparatide and alendronate on bone remodeling and confirm the bone formation effect of teriparatide. [source]


Inactivation of the Na-Cl Co-Transporter (NCC) Gene Is Associated With High BMD Through Both Renal and Bone Mechanisms: Analysis of Patients With Gitelman Syndrome and Ncc Null Mice,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2005
Laurence Nicolet-Barousse
Abstract Chronic thiazide treatment is associated with high BMD. We report that patients and mice with null mutations in the thiazide-sensitive NaCl cotransporter (NCC) have higher renal tubular Ca reabsorption, higher BMD, and lower bone remodeling than controls, as well as abnormalities in Ca metabolism, mainly caused by Mg depletion. Introduction: Chronic thiazide treatment decreases urinary Ca excretion (UVCa) and increases BMD. To understand the underlying mechanisms, Ca and bone metabolism were studied in two models of genetic inactivation of the thiazide-sensitive NaCl cotransporter (NCC): patients with Gitelman syndrome (GS) and Ncc knockout (Ncc,/,) mice. Materials and Methods: Ca metabolism was analyzed in GS patients and Ncc,/, mice under conditions of low dietary Ca. BMD was measured by DXA in patients and mice, and bone histomorphometry was analyzed in mice. Results: GS patients had low plasma Mg. They exhibited reduced UVCa, but similar serum Ca and GFR as control subjects, suggesting increased renal Ca reabsorption. Blood PTH was lower despite lower serum ionized Ca, and Mg repletion almost corrected both relative hypoparathyroidism and low UVCa. BMD was significantly increased in GS patients at both lumbar (+7%) and femoral (+16%) sites, and osteocalcin was reduced. In Ncc,/, mice, serum Ca and GFR were unchanged, but UVCa was reduced and PTH was elevated; Mg repletion largely corrected both abnormalities. Trabecular and cortical BMD were higher than in Ncc+/+ mice (+4% and +5%, respectively), and despite elevated PTH, were associated with higher cortical thickness and lower endosteal osteoclastic surface. Conclusions: Higher BMD is observed in GS patients and Ncc,/, mice. Relative hypoparathyroidism (human) and bone resistance to PTH (mice), mainly caused by Mg depletion, can explain the low bone remodeling and normal/low serum Ca despite increased renal Ca reabsorption. [source]


Long-Term Sensitivity of Uterus and Hypothalamus/Pituitary Axis to 17,-Estradiol Is Higher Than That of Bone in Rats,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2004
Reinhold G Erben MD
Abstract We examined the long-term sensitivity of uterus and bone to low-dose 17,-estradiol in a 4-month experiment in OVX rats and found that a dose of estradiol that fully protected against uterine atrophy did not protect against bone loss. Our results suggest higher estrogen sensitivity of the uterus compared with bone. Introduction: Estrogen is essential for the function of reproductive tissues and for the normal acquisition and maintenance of bone mass in females. This study was designed to examine the long-term sensitivity of the uterus and bone to low-dose estrogen. Materials and Methods: In preliminary experiments, we determined the lowest subcutaneous dose of 17,-estradiol able to fully protect against uterine atrophy in ovariectomized (OVX) rats. This dose was found to be 1.5 ,g/kg, given five times per week. Subsequently, groups of sham-operated (SHAM) or OVX 6-month-old rats (n = 8 each) were subcutaneously injected with vehicle or 1.5 ,g/kg 17,-estradiol five times per week. All animals were killed 4 months after surgery. Serum osteocalcin and urinary deoxypyridinoline were measured as biochemical markers of bone turnover. Bones were analyzed by bone histomorphometry and pQCT. Results and Conclusions: Our study clearly showed that a dose of estradiol that restores physiological estradiol serum levels, fully maintains uterine weight in OVX rats at the SHAM control level, and suppresses serum follicle-stimulating hormone (FSH) by 67% relative to OVX vehicle controls does not provide significant protection against OVX-induced bone loss at different cancellous and cortical bone sites. We conclude that the long-term sensitivity of the uterus and the hypothalamus/pituitary axis to 17,-estradiol is higher than that of bone in rats. [source]


Increased Bone Formation in Mice Lacking Plasminogen Activators,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2003
E Daci
Abstract Plasminogen activators tPA and uPA are involved in tissue remodeling, but their role in bone growth is undefined. Mice lacking tPA and uPA show increased bone formation and bone mass. The noncollagenous components of bone matrix are also increased, probably from defective degradation. This study underlines the importance of controlled bone matrix remodeling for normal endochondral ossification. Introduction: Proteolytic pathways are suggested to play a role in endochondral ossification. To elucidate the involvement of the plasminogen activators tPA and uPA in this process, we characterized the long bone phenotype in mice deficient in both tPA and uPA (tPA,/,:uPA,/,). Materials and Methods: Bones of 2- to 7-day-old tPA,/,:uPA,/, and wild-type (WT) mice were studied using bone histomorphometry, electron microscopy analysis, and biochemical assessment of bone matrix components. Cell-mediated degradation of metabolically labeled bone matrix, osteoblast proliferation, and osteoblast differentiation, both at the gene and protein level, were studied in vitro using cells derived from both genotypes. Results: Deficiency of the plasminogen activators led to elongation of the bones and to increased bone mass (25% more trabecular bone in the proximal tibial metaphysis), without altering the morphology of the growth plate. In addition, the composition of bone matrix was modified in plasminogen activator deficient mice, because an increased amount of proteoglycans (2×), osteocalcin (+45%), and fibronectin (+36%) was detected. Matrix degradation assays showed that plasminogen activators, by generating plasmin, participate in osteoblast-mediated degradation of the noncollagenous components of bone matrix. In addition, proliferation of primary osteoblasts derived from plasminogen activator-deficient mice was increased by 35%. Finally, osteoblast differentiation and formation of a mineralized bone matrix were enhanced in osteoblast cultures derived from tPA,/,:uPA,/, mice. Conclusions: The data presented indicate the importance of the plasminogen system in degradation of the noncollagenous components of bone matrix and suggest that the accumulation of these proteins in bone matrix,as occurs during plasminogen activator deficiency,may in turn stimulate osteoblast function, resulting in increased bone formation. [source]


Effects of h-PTH on cancellous bone mass, connectivity, and bone strength in ovariectomized rats with and without sciatic-neurectomy

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 3 2004
Y. Kasukawa
Abstract The purpose of this study was to determine whether h-PTH (1-34) treatment would recover cancellous bone connectivity and bone strength in ovariectomized (OVX) or ovariectomized and sciatic-neurectomized (OVX + NX) rats. Seven-month-old female Wistar rats were treated with h-PTH or vehicle (6.0 ,g/kg, six times a week, subcutaneously) for four weeks beginning 4, 8, or 12 weeks after OVX or OVX + NX. These were compared to age-matched baseline and sham-operated groups. Right tibiae were used for bone histomorphometry and node-strut analysis, and left tibiae were used for mechanical testing. The bone formation rates in the OVX and OVX + NX rats treated with h-PTH were significantly higher than those in their baseline controls, h-PTH treatment increased the node numbers and failure energies in the OVX rats, compared to their baseline controls, at all time points. However, in the OVX + NX rats, the effects of h-PTH treatment on the node number and failure energy were observed only at four weeks after surgery, but not at eight weeks or 12 weeks after surgery. These results suggest that the lowest limit, at which trabecular connectivity and bone strength are able to be restored by h-PTH, occurred between four and eight weeks in OVX + NX rats, but not in OVX rats, h-PTH cannot recover trabecular connectivity and bone strength in advanced osteopenia. © 2003 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved. [source]


Prophylactic Bisphosphonate Treatment Prevents Bone Fractures After Liver Transplantation

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 7 2007
M. Bodingbauer
A randomized controlled prospective open-label single center trial was performed. At the time of transplantation patients were randomly assigned to one of two treatment arms: The study group of 47 patients received zoledronic acid (ZOL, 8 infusions at 4 mg during the first 12 months after LT), calcium (1000 mg/d) and vitamin D (800 IE/d). The control group consisted of 49 patients who received calcium and vitamin D at same doses (CON). The incidence of bone fractures or death was predefined as the primary endpoint. Secondary endpoints included bone mineral density (BMD), serum biochemical markers of bone metabolism, parameters of trabecular bone histomorphometry and mineralization density distribution (BMDD). Patients were followed up for 24 months. Analysis was performed on an intention-to-treat basis. The primary endpoint fracture or death was reached in 26% of patients in the ZOL group and 46% in the CON group (p = 0.047, log rank test). Densitometry results were different between the groups at the femoral neck at 6 months after LT (mean+/-SD BMD ZOL: 0.80 ± 0.19 g/cm2 vs. CON: 0.73 ± 0.14 g/cm2, p = 0.036). Mixed linear models of biochemical bone markers showed less increase of osteocalcin in the ZOL group and histomorphometry and BMDD indicated a reduction in bone turnover. Prophylactic treatment with the bisphosphonate zoledronic acid reduces bone turnover and fractures after liver transplantation. [source]