Bone Cells (bone + cell)

Distribution by Scientific Domains

Terms modified by Bone Cells

  • bone cell activity

  • Selected Abstracts


    Ephs and Ephrins: A New Way for Bone Cells to Communicate,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2008
    Joseph Lorenzo
    No abstract is available for this article. [source]


    Perspective: Cell,Cell Adhesion and Signaling Through Cadherins: Connecting Bone Cells in Their Microenvironment,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 12 2006
    Gabriel Mbalaviele
    First page of article [source]


    Lipopolysaccharide alters decorin and biglycan synthesis in rat alveolar bone osteoblasts: consequences for bone repair during periodontal disease

    EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 3 2008
    Helen C. Roberts
    A prime pathogenic agent associated with periodontitis is lipopolysaccharide (LPS) derived from Porphyromonas gingivalis. This study investigated the effects of P. gingivalis LPS on osteoblasts, which are responsible for alveolar bone repair. Bone cells were obtained from explants of rat alveolar bone chips and cultured with 0,200 ng ml,1 of P. gingivalis LPS. Porphyromonas gingivalis LPS significantly increased cell proliferation and inhibited osteoblast differentiation, as judged by reduced alkaline phosphatase activity. Analysis of biglycan mRNA and protein levels indicated that P. gingivalis LPS significantly delayed the normally high expression of biglycan during the early stages of culture, which are associated with cell proliferation and early differentiation of progenitor cells. In the presence of P. gingivalis LPS, decorin expression by the alveolar bone cells was reduced during periods of culture relating to collagen fibrillogenesis and mineral deposition. Analysis of glycosaminoglycan chains conjugated to these proteoglycans suggested that in the presence of P. gingivalis LPS, dermatan sulfate persisted within the matrix. This study suggests that P. gingivalis LPS influences the expression and processing of decorin and biglycan in the matrix, altering alveolar bone cell activity and osteoblast phenotype development. The consequences of this altered expression in relation to hindering bone repair as part of the cycle of events during periodontal disease are discussed. [source]


    Identifying a molecular phenotype for bone marrow stromal cells with in vivo bone-forming capacity

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2010
    Kenneth H Larsen
    Abstract The ability of bone marrow stromal cells (BMSCs) to differentiate into osteoblasts is being exploited in cell-based therapy for repair of bone defects. However, the phenotype of ex vivo cultured BMSCs predicting their bone-forming capacity is not known. Thus we employed DNA microarrays comparing two human bone marrow stromal cell (hBMSC) populations: One is capable of in vivo heterotopic bone formation (hBMSC-TERT+Bone), and the other is not (hBMSC-TERT,Bone). Compared with hBMSC-TERT,Bone, the hBMSC-TERT+Bone cells had an increased overrepresentation of extracellular matrix genes (17% versus 5%) and a larger percentage of genes with predicted SP3 transcription factor,binding sites in their promoter region (21% versus 8%). On the other hand, hBMSC-TERT,Bone cells expressed a larger number of immune-response-related genes (26% versus 8%). In order to test for the predictive value of these markers, we studied the correlation between their expression levels in six different hBMSC-derived clones and the ability to form bone in vivo. We found a significant correlation for decorin, lysyl oxidase-like 4, natriuretic peptide receptor C, and tetranectin. No significant positive correlation was found for canonical osteoblastic markers Runx2, alkaline phosphatase, collagen type I, osteopontin, and bone sialoprotein. Prospective isolation of four additional hBMSC clones based on their expression levels of the molecular markers correlated with their in vivo bone-formation ability. In conclusion, our data suggest an in vitro molecular signature predictive for hBMSCs' in vivo bone-formation ability. Identifying more of these predictive markers would be very useful in the quality control of osteoblastic cells before use in therapy. © 2010 American Society for Bone and Mineral Research [source]


    Mechanically Strained Cells of the Osteoblast Lineage Organize Their Extracellular Matrix Through Unique Sites of ,V,3 -Integrin Expression

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2000
    Magdalena Wozniak
    Abstract Bone cells transduce mechanical signals into anabolic biochemical responses. However, the mechanisms of mechanotransduction are unknown. To address this issue, we performed studies in primary cells of the human osteoblast lineage grown on collagen/vitronectin-coated supports. We discovered that mechanical strain stimulated a redistribution of the ,v,3 -integrin to irregular plaque-like areas at the cell-extracellular matrix surface. Proteins involved in integrin-matrix interactions in focal adhesions, vinculin and talin, did not localize to the plaque-like areas of ,v,3 -expression, but signaling molecules such as focal adhesion kinase (FAK) did. Mechanical strain increased the number and size of the plaques defined by surface expression of ,v,3 -integrin. Osteopontin was secreted as a cross-linked macromolecular complex, likely through the action of tissue transglutaminase that also was found in the plaques of ,v,3 -integrin cell-matrix interaction. Mechanical strain increased mineralization of the extracellular matrix that developed in these plaques in ,v,3 -integrin-dependent manner. Because the plaque-like areas of cell-matrix interaction exhibit macromolecular assembly and mineralization, we conclude that they may represent subcellular domains of bone formation and that ,v,3 -integrin activation represents one mechanism by which mechanical strain stimulates bone formation. [source]


    Transgenic disruption of glucocorticoid signaling in mature osteoblasts and osteocytes attenuates K/BxN mouse serum,induced arthritis in vivo

    ARTHRITIS & RHEUMATISM, Issue 7 2009
    Frank Buttgereit
    Objective Endogenous glucocorticoids (GCs) modulate numerous biologic systems involved in the initiation and maintenance of arthritis. Bone cells play a critical role in the progression of arthritis, and some of the effects of GCs on inflammation may be mediated via these cells. The aim of this study was to investigate the impact of osteoblast-targeted disruption of GC signaling on joint inflammation, cartilage damage, and bone metabolism in the K/BxN mouse serum transfer model of autoimmune arthritis. Methods Intracellular GC signaling was disrupted in osteoblasts through transgenic overexpression of 11,-hydroxysteroid dehydrogenase type 2 under the control of a type I collagen promoter. Arthritis was induced in 5-week-old male transgenic mice and their wild-type (WT) littermates, and paw swelling was assessed daily until the mice were killed. The mice were examined by histology, histomorphometry, and microfocal computed tomography, and serum was analyzed for cytokines, adrenocorticotropic hormone, and corticosterone. Results Acute arthritis developed in both transgenic and WT mice treated with K/BxN mouse serum. However, the arthritis and local inflammatory activity were significantly attenuated in transgenic mice, as judged by clinical and histologic indices of inflammation and cartilage damage. Bone turnover and bone volume remained unchanged in arthritic transgenic mice, while WT mice exhibited stimulated bone resorption, suppressed osteoblast activity, and significantly reduced bone volume, compatible with the known effects of active inflammation on bone. Circulating levels of proinflammatory cytokines tended to be lower in arthritic transgenic mice than in control transgenic mice. Conclusion Disruption of GC signaling in osteoblasts significantly attenuates K/BxN mouse serum,induced autoimmune arthritis in mice. These data suggest that osteoblasts modulate the immune-mediated inflammatory response via a GC-dependent pathway. [source]


    Extracellular matrix alters the relationship between tritiated thymidine incorporation and proliferation of MC3T3-E1 cells during osteogenesis in vitro

    CELL PROLIFERATION, Issue 1 2002
    W. J. Peterson
    Bone cells in vivo exist in direct contact with extracellular matrix, which regulates their basic biological processes including metabolism, development, growth and differentiation. Thus, the in vitro activity of cells cultured on tissue culture treated plastic could be different from the activity of cells cultured on their natural substrate. We selected MC3T3-E1 pre-osteoblastic cells to study the effect of extracellular matrix on cell proliferation because these cells undergo a progressive developmental sequence of proliferation and differentiation. MC3T3-E1 cells were cultured on plastic or plastic coated with ECM, fibronectin, collagen type I, BSA or poly l -lysine and their ability to proliferate was assessed by incorporation of [3H]dT or by enumeration of cells. Our results show that (1) ECM inhibits incorporation of [3H]dT by MC3T3-E1 cells; (2) collagen type I, but not BSA, poly l -lysine or fibronectin also inhibits incorporation of [3H]dT; (3) the level of ECM inhibition of [3H]dT incorporation is directly related to the number of cells cultured, but unrelated to the cell cycle distribution or endogenous thymidine content; (4) the kinetic profile of [3H]dT uptake suggest that ECM inhibits transport of [3H]dT from the extracellular medium, and (5) cell counts are similar in cultures whether cells are grown on plastic or ECM. These results suggest that decreased incorporation of [3H]dT by cells cultured on ECM is not reflective of bone cell proliferation. [source]


    Lipopolysaccharide alters decorin and biglycan synthesis in rat alveolar bone osteoblasts: consequences for bone repair during periodontal disease

    EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 3 2008
    Helen C. Roberts
    A prime pathogenic agent associated with periodontitis is lipopolysaccharide (LPS) derived from Porphyromonas gingivalis. This study investigated the effects of P. gingivalis LPS on osteoblasts, which are responsible for alveolar bone repair. Bone cells were obtained from explants of rat alveolar bone chips and cultured with 0,200 ng ml,1 of P. gingivalis LPS. Porphyromonas gingivalis LPS significantly increased cell proliferation and inhibited osteoblast differentiation, as judged by reduced alkaline phosphatase activity. Analysis of biglycan mRNA and protein levels indicated that P. gingivalis LPS significantly delayed the normally high expression of biglycan during the early stages of culture, which are associated with cell proliferation and early differentiation of progenitor cells. In the presence of P. gingivalis LPS, decorin expression by the alveolar bone cells was reduced during periods of culture relating to collagen fibrillogenesis and mineral deposition. Analysis of glycosaminoglycan chains conjugated to these proteoglycans suggested that in the presence of P. gingivalis LPS, dermatan sulfate persisted within the matrix. This study suggests that P. gingivalis LPS influences the expression and processing of decorin and biglycan in the matrix, altering alveolar bone cell activity and osteoblast phenotype development. The consequences of this altered expression in relation to hindering bone repair as part of the cycle of events during periodontal disease are discussed. [source]


    Association of a single nucleotide polymorphism in the steroid and xenobiotic receptor (SXR) gene (IVS1-579A/G) with bone mineral density

    GERIATRICS & GERONTOLOGY INTERNATIONAL, Issue 2 2007
    Tomohiko Urano
    Vitamin K2 plays an important role in the bone metabolism. The steroid and xenobiotic receptor (SXR) as a nuclear receptor activated by vitamin K2 as well as rifampicin could increase bone markers such as alkaline phosphatase in human osteoblastic cells. Thus, the SXR could mediate vitamin K2 signaling pathway in bone cells. Therefore, we analyzed expression of the SXR mRNA in human primary osteoblasts and chondrocytes. We also studied association of a single nucleotide polymorphism (SNP) in the SXR gene with bone mineral density (BMD). Expression levels of the SXR mRNA were analyzed during the culture course of human primary osteoblasts and chondrocytes. Association of a SNP in the SXR gene in intron 1 (IVS1-579A>G) with BMD was examined in 294 healthy postmenopausal Japanese women. The SXR mRNA increased at day 5 and then decreased at day 10 in human primary osteoblasts. Its mRNA gradually increased in human primary chondrocytes until day 10. As an association study of a SNP in the SXR gene (IVS1-579A/G), the subjects without the A allele (GG; n = 47) had significantly higher total BMD than the subjects bearing at least one A allele (AA + AG; n = 247) (Z score ± SD; 0.635 ± 1.031 versus 0.268 ± 1.061; P = 0.0298). The SXR mRNA was expressed and regulated in primary human osteoblasts and chondrocytes. A genetic variation at the SXR gene locus is associated with BMD, suggesting an involvement of the SXR gene in human bone metabolism. [source]


    TGF-,1 alone and in combination with calcium hydroxide is synergistic to TGF-,1 production by osteoblasts in vitro

    INTERNATIONAL ENDODONTIC JOURNAL, Issue 5 2000
    A. Jaunberzins
    Abstract Aim To examine the effects of calcium hydroxide (Ca(OH)2), transforming growth factor-beta (TGF-,1), and Ca(OH)2/TGF-,1 coadministration on TGF-,1 and interleukin-6 (IL-6) synthesis by early (subculture 1) and late (subculture 5) osteoblast cultures. Methodology Early and late cultures were established using bone cells harvested from 21-day-old fetal rat calvaria. Cell cultures of both early and late osteoblasts were divided into four groups: group 1, control; group 2, cells challenged with Ca(OH)2; group 3, cells challenged with TGF-,1; and group 4, cells challenged with Ca(OH)2 and TGF-,1 in combination. TGF-,1 and IL-6 levels for all groups were determined using ELISA methodology. Results anova and Tukey HS analyses revealed that osteoblasts of groups 3 and 4 significantly increased (P < 0.001) TGF-,1 synthesis in both early and late cultures of osteoblasts. IL-6 was not detected in any of the groups considered in this study. Conclusions Exogenous TGF-,1 has an autocrine effect on cell cultures of osteoblasts. Administration of TGF-,1 alone or in combination with Ca(OH)2 increases the synthesis of TGF-,1 in osteoblast cultures. Ca(OH)2 and TGF-,1 are compatible when placed in a culture of osteoblasts. Ca(OH)2 provides a favourable environment for the anabolic effects of TGF-,1. [source]


    Environmental Toxicants May Modulate Osteoblast Differentiation by a Mechanism Involving the Aryl Hydrocarbon Receptor,,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 10 2007
    Elizabeth P Ryan
    Abstract The AHR mediates many of the toxicological effects of aromatic hydrocarbons. We show that AHR expression in osteoblasts parallels the induction of early bone-specific genes involved in maturation. The AHR may not only mediate the effects of toxicants, but with an as yet unidentified ligand, be involved in the differentiation pathways of osteoblasts. Introduction: Metabolic bone diseases arise as a result of an imbalance in bone cell activities. Recent evidence suggests that environmental toxicants may be contributing factors altering these activities. One candidate molecule implicated in mediating the toxic effects of exogenous compounds is the aryl hydrocarbon receptor (AHR). Materials and Methods: Osteoblasts isolated from neonatal rat calvaria were analyzed for AHR expression by quantitative PCR, Western blot, and immunohistochemistry. In addition, AHR activation was evaluated by electromobility gel shift assay and fluorescence microscopy. Results: Our findings showed AHR expression in mature osteoblasts in vivo. The pattern of AHR expression peaks after alkaline phosphatase and before induction of osteocalcin. We first show that AHR functions as a transactivating receptor in osteoblasts, as evidenced by its ligand-dependent migration to the nucleus and its association with known dioxin response elements. AHR activation by 2,3,7,8-tetrachlorodibenzo -p -dioxin (TCDD) mediated the induction of cytochrome p450 1A1 and cycloxygenase-2 protein levels. This effect could be inhibited by the potent AHR antagonist, 3,4 methoxynitroflavone. Furthermore, lead treatment of osteoblasts upregulates the expression of AHR mRNA and protein levels, supporting a novel mechanism whereby lead in the skeleton may increase the sensitivity of bone cells to toxicant exposure. Conclusions: These data imply that the AHR mediates the effects of aromatic toxicants on bone and that AHR expression is regulated during osteoblast differentiation. [source]


    Isolation and Purification of Osteocytes

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2005
    A van der Plas
    An isolation method for osteocytes is described. After removal of the periostea, bone cells were isolated from calvariae of 18-day-old chicken embryos by alternating treatments with collagenase and EDTA. Osteocytes were purified from the heterogeneous bone cell population with the help of the osteocyte-specific MAb OB 7.3 bound to protein G-conjugated magnetic beads. The purity of the osteocyte population ultimately obtained was more than 95%. Osteocytes were found to adhere rapidly to glass or plastic substrates. They showed numerous processes of various types. These processes could branch and make contact with those of other osteocytes. After 1,2 days of culture, the isolated osteocytes formed a network of apparently interconnected cell processes very similar to the osteocyte network in bone. [source]


    Climbing Exercise Increases Bone Mass and Trabecular Bone Turnover Through Transient Regulation of Marrow Osteogenic and Osteoclastogenic Potentials in Mice,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2003
    Toshiharu Mori
    Abstract To investigate the relationship between the effects of bone turnover and bone marrow cell development in bone cells, we developed a mouse voluntary climbing exercise model. Climbing exercise increased bone volume and transient osteogenic potential of bone marrow. This model would be suitable for investigating the mechanistic roles of mechanical loading. Introduction: The relationship between bone mass gain and local bone formation and resorption in mechanically loaded bone is not well understood. Materials and Methods: Sixty-five C57BL/6J mice, 8 weeks of age, were assigned to five groups: a baseline control and two groups each of ground control and climbing exercise mice for 2 and 4 weeks. Mice were housed in a 100-cm tower and had to climb toward a bottle placed at the top to drink water. Results: Compared with the ground control, bone mineral density of the left femur increased in the climbing mice at 4 weeks. At 2 and 4 weeks, bone formation rate (BFR/BS) of periosteal surface, the cross-sectional area, and moment of inertia were increased in the climbing mice, whereas BFR/BS and eroded surface (ES/BS) of endosteal surface did not differ. The trabecular bone volume (BV/TV) of the proximal tibia increased in climbing mice, and osteoclast surface (Oc.S/BS) and osteoclast number decreased at 2 weeks. At 4 weeks, there were increases in BV/TV and parameters of bone formation, including mineralized surface, mineral apposition rate, and bone formation rate. In marrow cell cultures from the tibia, the number of alkaline phosphatase+ colony forming units-fibroblastic and the area of mineralized nodule formation in climbing mice were increased, and the number of osteoclast-like TRACP+ multinucleated cells was lower at 2 weeks. At 4 weeks, these parameters recovered to the levels of the ground controls. Conclusion: Our results indicate that climbing increased trabecular bone volume and reduced bone resorption, with a subsequent increase in bone formation. Intermittent climbing downregulates marrow osteoclastogenic cells and upregulates osteogenic cells initially, but further exercise seemed to desensitize them. Cortical envelopes were enlarged earlier, but the response seems to differ from trabecular bone. [source]


    Cytokines, Osteoprotegerin, and RANKL In Vitro and Histomorphometric Indices of Bone Turnover in Patients With Different Bone Diseases,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 3 2003
    Heide Siggelkow
    Abstract Cytokines are supposed to play an essential role in the regulation of the bone metabolic unit. However, information on cytokine production of primary human osteoblasts from patients with metabolic bone disease is scarce, and few attempts have been made to correlate such data to histomorphometric parameters of individual patients. We investigated 11 patients with metabolic bone disease referred to our outpatient department for bone biopsy and analyzed interleukin (IL)-1, IL-6, and TNF-, protein release and gene expression in primary osteoblast cultures. Compared with four controls, five patients showed normal cytokine protein release, whereas six patients showed much higher levels of interleukin-6 (26-fold) and TNF-, (84-fold). All three cytokines were strongly correlated concerning gene expression and/or protein levels (r = 0.72,0.96). Histomorphometric analysis of the bone samples showed that eroded surface (ES/BS) as a parameter of bone resorption was significantly associated with TNF-,. In addition, RANKL gene expression was positively associated with ES/BS and osteoclast surface (Oc.S/BS). Finally, the formation parameters osteoid volume and osteoid surface were negatively associated with TNF-,. In conclusion, in an in vitro-ex vivo model of bone cells obtained from a group of 11 patients with different forms of metabolic bone disease, cytokine release in conditioned medium was significantly associated with bone resorption and bone formation, as quantified by histomorphometry. TNF-, seemed to be the more important cytokine; its effect on bone resorption could be mediated by RANKL. [source]


    Purification of Matrix Gla Protein From a Marine Teleost Fish, Argyrosomus regius: Calcified Cartilage and Not Bone as the Primary Site of MGP Accumulation in Fish,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2003
    DC Simes
    Abstract Matrix Gla protein (MGP) belongs to the family of vitamin K-dependent, Gla-containing proteins, and in mammals, birds, and Xenopus, its mRNA was previously detected in extracts of bone, cartilage, and soft tissues (mainly heart and kidney), whereas the protein was found to accumulate mainly in bone. However, at that time, it was not evaluated if this accumulation originated from protein synthesized in cartilage or in bone cells because both coexist in skeletal structures of higher vertebrates and Xenopus. Later reports showed that MGP also accumulated in costal calcified cartilage as well as at sites of heart valves and arterial calcification. Interestingly, MGP was also found to accumulate in vertebra of shark, a cartilaginous fish. However, to date, no information is available on sites of MGP expression or accumulation in teleost fishes, the ancestors of terrestrial vertebrates, who have in their skeleton mineralized structures with both bone and calcified cartilage. To analyze MGP structure and function in bony fish, MGP was acid-extracted from the mineralized matrix of either bone tissue (vertebra) or calcified cartilage (branchial arches) from the bony fish, Argyrosomus regius,, separated from the mineral phase by dialysis, and purified by Sephacryl S-100 chromatography. No MGP was recovered from bone tissue, whereas a protein peak corresponding to the MGP position in this type of gel filtration was obtained from an extract of branchial arches, rich in calcified cartilage. MGP was identified by N-terminal amino acid sequence analysis, and the resulting protein sequence was used to design specific oligonucleotides suitable to amplify the corresponding DNA by a mixture of reverse transcription-polymerase chain reaction (RT-PCR) and 5,rapid amplification of cDNA (RACE)-PCR. In parallel, ArBGP (bone Gla protein, osteocalcin) was also identified in the same fish, and its complementary DNA cloned by an identical procedure. Tissue distribution/accumulation was analyzed by Northern blot, in situ hybridization, and immunohistochemistry. In mineralized tissues, the MGP gene was predominantly expressed in cartilage from branchial arches, with no expression detected in the different types of bone analyzed, whereas BGP mRNA was located in bone tissue as expected. Accordingly, the MGP protein was found to accumulate, by immunohistochemical analysis, mainly in the extracellular matrix of calcified cartilage. In soft tissues, MGP mRNA was mainly expressed in heart but in situ hybridization, indicated that cells expressing the MGP gene were located in the bulbus arteriosus and aortic wall, rich in smooth muscle and endothelial cells, whereas no expression was detected in the striated muscle myocardial fibers of the ventricle. These results show that in marine teleost fish, as in mammals, the MGP gene is expressed in cartilage, heart, and kidney tissues, but in contrast with results obtained in Xenopus and higher vertebrates, the protein does not accumulate in vertebra of non-osteocytic teleost fish, but only in calcified cartilage. In addition, our results also indicate that the presence of MGP mRNA in heart tissue is due, at least in fish, to the expression of the MGP gene in only two specific cell types, smooth muscle and endothelial cells, whereas no expression was found in the striated muscle fibers of the ventricle. In light of these results and recent information on expression of MGP gene in these same cell types in mammalian aorta, it is likely that the levels of MGP mRNA previously detected in Xenopus, birds, and mammalian heart tissue may be restricted toregions rich in smooth muscle and endothelial cells. Our results also emphasize the need to re-evaluate which cell types are involved in MGP gene expression in other soft tissues and bring further evidence that fish are a valuable model system to study MGP gene expression and regulation. [source]


    Fluid Flow Induction of Cyclo-Oxygenase 2 Gene Expression in Osteoblasts Is Dependent on an Extracellular Signal-Regulated Kinase Signaling Pathway,,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2002
    Sunil Wadhwa
    Abstract Mechanical loading of bone may be transmitted to osteocytes and osteoblasts via shear stresses at cell surfaces generated by the flow of interstitial fluid. The stimulated production of prostaglandins, which mediates some effects of mechanical loading on bone, is dependent on inducible cyclo-oxygenase 2 (COX-2) in bone cells. We examined the fluid shear stress (FSS) induction of COX-2 gene expression in immortalized MC3T3-E1 osteoblastic cells stably transfected with ,371/+70 base pairs (bp) of the COX-2 5,-flanking DNA (Pluc371) and in primary osteoblasts (POBs) from calvaria of mice transgenic for Pluc371. Cells were plated on collagen-coated glass slides and subjected to steady laminar FSS in a parallel plate flow chamber. FSS, from 0.14 to10 dynes/cm2, induced COX-2 messenger RNA (mRNA) and protein. FSS (10 dynes/cm2) induced COX-2 mRNA within 30 minutes, with peak effects at 4 h in MC3T3-E1 cells and at ,8 h in POBs. An inhibitor of new protein synthesis puromycin blocked the peak induction of COX-2 mRNA by FSS. COX-2 promoter activity, measured as luciferase activity, correlated with COX-2 mRNA expression in both MC3T3-E1 and POB cells. FSS induced phosphorylation of extracellular signal-regulated kinase (ERK) in MC3T3-E1 cells, with peak effects at 5 minutes. Inhibiting ERK phosphorylation with the specific inhibitor PD98059 inhibited FSS induction of COX-2 mRNA by 55-70% and FSS stimulation of luciferase activity by ,80% in both MC3T3-E1 and POB cells. We conclude that FSS transcriptionally induces COX-2 gene expression in osteoblasts, that the maximum induction requires new protein synthesis, and that induction occurs largely via an ERK signaling pathway. [source]


    Perspective: Postmenopausal Osteoporosis as a Failure of Bone's Adaptation to Functional Loading: A Hypothesis,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2001
    Lance Lanyon
    Abstract There is substantial evidence that bones' ability to withstand functional loading without damage depends on the processes of bone modeling and remodeling, which are responsible for establishing and maintaining bone architecture, being influenced by a feedback mechanism related to the control of functional strains. It is probably useful to consider the diminished ability to maintain bone strength in postmenopausal osteoporosis as a failure of this mechanism. Acceptance of this approach would not only increase understanding of the etiology of postmenopausal osteoporosis but also significantly influence the ways in which it is investigated and treated. This would not mean that the many other factors affecting bone mass and bone cell activity will be ignored, but rather these factors will be put in perspective. Research to prevent or treat osteoporosis could be directed usefully to understanding how osteoblasts, lining cells, and osteocytes respond to mechanically derived information and how these responses are converted into stimuli controlling structurally appropriate modeling and remodeling. Evidence suggesting that early strain-related responses of bone cells in males and females involve the estrogen receptor (ER) could explain decreased effectiveness of this pathway when ER levels are low. [source]


    Cancellous Bone Remodeling Occurs in Specialized Compartments Lined by Cells Expressing Osteoblastic Markers

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2001
    Ellen M. Hauge
    Abstract We describe a sinus, referred to as a bone remodeling compartment (BRC), which is intimately associated with cancellous bone remodeling. The compartment is lined on its marrow side by flattened cells and on its osseous side by the remodeling bone surface, resembling a roof of flattened cells covering the bone surface. The flat marrow lining cells are in continuity with the bone lining cells at the margins of the BRC. We examined a large number of diagnostic bone biopsy specimens received during recent years in the department. Furthermore, 10 patients (8 women and 2 men, median age 56 [40,69] years) with the high turnover disease of primary hyperparathyroidism who were treated with parathyroidectomy and followed for 3 years were included in the histomorphometric study. Bone samples for the immuno-enzyme staining were obtained from an amputated extremity of child. The total cancellous bone surface covered by BRC decreases by 50% (p < 0.05) following normalization of turnover and is paralleled by a similar 50% decrease in remodeling surface (p < 0.05). The entire eroded surface and two-thirds of the osteoid surface are covered by a BRC. BRC-covered uncompleted walls are 30% (p < 0.05) thinner than those without a BRC. This indicates that the BRC is invariably associated with the early phases of bone remodeling, that is, bone resorption, whereas it closes during the late part of bone formation. Immuno-enzyme staining shows that the flat marrow lining cells are positive for alkaline phosphatase, osteocalcin, and osteonectin, suggesting that they are bone cells. The first step in cancellous bone remodeling is thought to be the lining cells digesting the unmineralized matrix membrane followed by their disappearance and the arrival of the bone multicellular unit (BMU). We suggest that the lining cell barrier persists during bone remodeling; that the old lining cells become the marrow lining cells, allowing bone resorption and bone formation to proceed under a common roof of lining cells; that, at the end of bone formation, new bone lining cells derived from the flattened osteoblasts replace the marrow lining cells thereby closing the BRC; and that the two layers of lining cells eventually becomes a single layer. The integrity of the osteocyte-lining cell system is reestablished by the new generation of lining cells. The BRC most likely serves multiple purposes, including efficient exchange of matrix constituents and minerals, routing, monitoring, or modulating bone cell recruitment, and possibly the anatomical basis for the coupling of bone remodeling. [source]


    Indapamide, a Thiazide-Like Diuretic, Decreases Bone Resorption In Vitro

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2001
    Agnes Lalande
    Abstract We recently showed that indapamide (IDP), a thiazide-related diuretic, increases bone mass and decreases bone resorption in spontaneously hypertensive rats supplemented with sodium. In the present study, we evaluated the in vitro effects of this diuretic on bone cells, as well as those of hydrochlorothiazide (HCTZ), the reference thiazide, and acetazolamide (AZ), a carbonic anhydrase (CA) inhibitor. We showed that 10,4 M IDP and 10,4 M AZ, as well as 10,5 M pamidronate (APD), decreased bone resorption in organ cultures and in cocultures of osteoblast-like cells and bone marrow cells in the presence of 10,8 M 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. We investigated the mechanism of this antiresorptive effect of IDP; IDP decreased osteoclast differentiation as the number of osteoclasts developing in coculture of marrow and osteoblast-like cells was decreased markedly. We then investigated whether IDP affected osteoblast-like cells because these cells are involved in the osteoclast differentiation. Indeed, IDP increased osteoblast-like cell proliferation and alkaline phosphatase (ALP) expression. Nevertheless, it did not modify the colony-stimulating factor 1 (CSF-1) production by these cells. In addition, osteoblast-like cells expressed the Na+/Cl, cotransporter that is necessary for the renal action of thiazide diuretics, but IDP inhibited bone resorption in mice lacking this cotransporter, so the inhibition of bone resorption and osteoclast differentiation did not involve this pathway. Thus, we hypothesized that IDP may act directly on cells of the osteoclast lineage. We observed that resorption pits produced by spleen cells cultured in the presence of soluble osteoclast differentiation factor (sODF) and CSF-1 were decreased by 10,4 M IDP as well as 10,5 M APD. In conclusion, in vitro IDP increased osteoblast proliferation and decreased bone resorption at least in part by decreasing osteoclast differentiation via a direct effect on hematopoietic precursors. [source]


    Human Bone Cell Hyperpolarization Response to Cyclical Mechanical Strain Is Mediated by an Interleukin-1, Autocrine/Paracrine Loop

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2000
    D. M. Salter
    Abstract Mechanical stimuli imparted by stretch, pressure, tension, fluid flow, and shear stress result in a variety of biochemical responses important in bone (re)modeling. The molecules involved in the recognition and transduction of mechanical stimuli that lead to modulation of bone cell function are not yet fully characterized. Cyclical pressure-induced strain (PIS) induces a rapid change in membrane potential of human bone cells (HBC) because of opening of membrane ion channels. This response is mediated via integrins and requires tyrosine kinase activity and an intact actin cytoskeleton. We have used this electrophysiological response to further study the signaling events occurring early after mechanical stimulation of HBC. Stimulation of HBC at 0.33Hz PIS, but not 0.104 Hz PIS, results in the production of a transferable factor that induces membrane hyperpolarization of unstimulated HBC. The production of this factor is inhibited by antibodies to ,1-integrin. Interleukin-1, (IL-1,) and prostaglandin E2 (PGE2) were identified as candidate molecules for the transferable factor as both were shown to induce HBC hyperpolarization by opening of small conductance calcium-activated potassium channels, the means by which 0.33 Hz PIS causes HBC hyperpolarization. Antibodies to IL-1,, but not other cytokines studied, inhibit the hyperpolarization response of HBC to 0.33 Hz PIS. Comparison of the signaling pathways required for 0.33 Hz PIS and IL-1,-induced membrane hyperpolarization shows that both involve the phospholipase C/inositol triphosphate pathway, protein kinase C (PKC), and prostaglandin synthesis. Unlike 0.33 Hz PIS-induced membrane hyperpolarization, IL-1,-induced hyperpolarization does not require tyrosine kinase activity or an intact actin cytoskeleton. These studies suggest that 0.33 Hz PIS of HBC induces a rapid, integrin-mediated, release of IL-1, with a subsequent autocrine/paracrine loop resulting in membrane hyperpolarization. IL-1, production in response to mechanical stimuli is potentially of importance in regulation of bone (re)modeling. [source]


    Stimulatory Effect of Insulin-Like Growth Factor Binding Protein-5 on Mouse Osteoclast Formation and Osteoclastic Bone-Resorbing Activity

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2000
    Masanori Kanatani
    Abstract Insulin-like growth factor binding protein-5 (IGFBP-5) stimulates osteoblast proliferation directly or indirectly through IGF-I action, but its effects on osteoclast formation and osteoclastic activity are unknown. We tested the effects of IGFBP-5 on osteoclastic activity and osteoclast formation. IGFBP-5 significantly stimulated pit formation by pre-existent osteoclasts in mouse bone cell cultures and its stimulatory effect was completely blocked by IGF-I antibody (Ab). However, IGFBP-5 did not affect the bone-resorbing activity of isolated rabbit osteoclasts. When IGFBP-5 was added to unfractionated bone cells after degeneration of pre-existent osteoclasts, IGFBP-5 (77 pM,7.7 nM) dose-dependently stimulated osteoclast-like cell formation, irrespective of the presence of IGF-I Ab. Moreover, osteoclast-like cells newly formed by IGFBP-5 from unfractionated bone cells possessed the ability to form pits on dentine slices. We next examined the direct effect of IGFBP-5 on osteoclast precursors in the absence of stromal cells, using hemopoietic blast cells derived from spleen cells. IGFBP-5 dose-dependently stimulated osteoclast-like cell formation from osteoclast precursors, irrespective of the presence of IGF-I Ab. Growth hormone (GH) as well as IGF-I significantly stimulated bone resorption by pre-existent osteoclasts in mouse bone cell cultures and these stimulatory effects were completely blocked by IGF-I Ab. GH as well as IGF-I stimulated osteoclast-like cell formation from unfractionated bone cells and this stimulatory effect of GH was significantly but partially blocked by IGF-I Ab. The direct stimulatory effect of GH on osteoclast-like cell formation from hemopoietic blast cells was not affected by IGF-I Ab. The present data indicate that IGFBP-5 stimulates bone resorption both by stimulation of osteoclast formation in an IGF-I,independent fashion and by IGF-I,dependent activation of mature osteoclasts, possibly via osteoblasts, in vitro. (J Bone Miner Res 2000;15:902,910) [source]


    Direct and Indirect Actions of Fibroblast Growth Factor 2 on Osteoclastic Bone Resorption in Cultures

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 3 2000
    Hiroshi Kawaguchi M.D., Ph.D.
    Abstract Fibroblast growth factor 2 (FGF-2 or basic FGF) is known to show variable actions on bone formation and bone resorption. This study was undertaken to elucidate the mechanisms whereby FGF-2 affects bone metabolism, especially bone resorption, using three different culture systems. FGF-2 at 10,9 M and higher concentrations induced osteoclastic cell formation in the coculture system of mouse osteoblastic cells and bone marrow cells, and this induction was abrogated by nonsteroidal anti-inflammatory drugs (NSAIDs). 45Ca release from prelabeled cultured mouse calvariae stimulated by FGF-2 (10,8 M) was also inhibited by NSAIDs, and the inhibition was stronger by NSAIDs, which are more selective for inhibition of cyclooxygenase 2 (COX-2) than COX-1, suggesting the mediation of COX-2 induction. COX-2 was highly expressed and its messenger RNA (mRNA) level was stimulated by FGF-2 in osteoblastic cells whereas it was undetectable or not stimulated by FGF-2 in cells of osteoclast lineage. To further investigate the direct actions of FGF-2 on osteoclasts, resorbed pit formation was compared between cultures of purified osteoclasts and unfractionated bone cells from rabbit long bones. FGF-2 (,10,12 M) stimulated resorbed pit formation by purified osteoclasts with a maximum effect of 2.0-fold at 10,11 M, and no further stimulation was observed at higher concentrations. However, FGF-2 at 10,9 M , 10,8 M stimulated resorbed pit formation by unfractionated bone cells up to 9.7-fold. NS-398, a specific COX-2 inhibitor, did not affect the FGF-2 stimulation on purified osteoclasts but inhibited that on unfractionated bone cells. We conclude that FGF-2 at low concentrations (,10,12 M) acts directly on mature osteoclasts to resorb bone moderately, whereas at high concentrations (,10,9 M) it acts on osteoblastic cells to induce COX-2 and stimulates bone resorption potently. [source]


    Activation of nervous system development genes in bone marrow derived mesenchymal stem cells following spaceflight exposure,

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2010
    Massimiliano Monticone
    Abstract Stalled cell division in precursor bone cells and reduced osteoblast function are considered responsible for the microgravity-induced bone loss observed during spaceflight. However, underlying molecular mechanisms remain unraveled. Having overcome technological difficulties associated with flying cells in a space mission, we present the first report on the behavior of the potentially osteogenic murine bone marrow stromal cells (BMSC) in a 3D culture system, flown inside the KUBIK aboard space mission ISS 12S (Soyuz TMA-8,+,Increment 13) from March 30 to April 8, 2006 (experiment "Stroma-2"). Flight 1g control cultures were performed in a centrifuge located within the payload. Ground controls were maintained on Earth in another KUBIK payload and in Petri dishes. Half of the cultures were stimulated with osteo-inductive medium. Differences in total RNA extracted suggested that cell proliferation was inhibited in flight samples. Affymetrix technology revealed that 1,599 genes changed expression after spaceflight exposure. A decreased expression of cell-cycle genes confirmed the inhibition of cell proliferation in space. Unexpectedly, most of the modulated expression was found in genes related to various processes of neural development, neuron morphogenesis, transmission of nerve impulse and synapse, raising the question on the lineage restriction in BMSC. J. Cell. Biochem. 111: 442,452, 2010. © 2010 Wiley-Liss, Inc. [source]


    2-methoxyestradiol-mediated anti-tumor effect increases osteoprotegrin expression in osteosarcoma cells

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2010
    Michaela B. Benedikt
    Abstract Osteosarcoma is a bone tumor that frequently develops during adolescence. 2-Methoxyestradiol (2-ME), a naturally occurring metabolite of 17,-estradiol, induces cell cycle arrest and cell death in human osteosarcoma cells. To investigate whether the osteoprotegrin (OPG) protein plays a role in 2-ME actions, we studied the effect of 2-ME treatment on OPG gene expression in human osteosarcoma cells. 2-ME treatment induced OPG gene promoter activity and mRNA levels. Also, Western blot analysis showed that 2-ME treatment increased OPG protein levels in MG63, KHOS, 143B and LM7 osteosarcoma cells by 3-, 1.9-, 2.8-, and 2.5-fold, respectively, but did not affect OPG expression in normal bone cells. In addition, increases in OPG protein levels were observed in osteosarcoma cell culture media after 3 days of 2-ME treatment. The effect of 2-ME on osteosarcoma cells was ligand-specific as parent estrogen, 17,-estradiol and a tumorigenic estrogen metabolite, 16,-hydroxyestradiol, which do not affect osteosarcoma cell cycle and cell death, had no effect on OPG protein expression. Furthermore, co-treating osteosarcoma cells with OPG protein did not further enhance 2-ME-mediated anti-tumor effects. OPG-released in 2-ME-treated cultures led to an increase in osteoblastic activity and a decrease in osteoclast number, respectively. These findings suggest that OPG is not directly involved in 2-ME-mediated anti-proliferative effects in osteosarcoma cells, but rather participates in anti-resorptive functions of 2-ME in bone tumor environment. J. Cell. Biochem. 109: 950,956, 2010. © 2010 Wiley-Liss, Inc. [source]


    Nmp4/CIZ contributes to fluid shear stress induced MMP-13 gene induction in osteoblasts

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2007
    Kanokwan Charoonpatrapong-Panyayong
    Abstract The expression of matrix metalloproteinase-13 (MMP-13), involved in bone turnover, is elevated in stretched MC3T3-E1 osteoblast-like cells. Strain-mediated forces impact bone remodeling due in large part to the movement of fluid through the canalicular-lacunar network. The resulting fluid shear stress (FSS) over the surface membranes of bone cells initiates bone remodeling. Although the nuclear events mediating putative FSS-induced changes in osteoblast MMP-13 transcription are unknown, previous studies with bone cells suggest an overlap between osteoblast FSS- and PTH-induced signal response pathways. MMP-13 PTH response is regulated by a 110 bp 5, regulatory region, conserved across the mouse, rat, and human genes, that supports the binding of numerous transcription factors including Runx2, c-fos/c-jun, Ets-1, and nuclear matrix protein 4/cas interacting zinc finger protein (Nmp4/CIZ) a nucleocytoplasmic shuttling trans-acting protein that attenuates PTH-driven transcription. Nmp4/CIZ also binds p130cas, an adaptor protein implicated in mechanotransduction. Here we sought to determine whether Nmp4/CIZ contributes to FSS-induced changes in MMP-13 transcription. FSS (12 dynes/cm2, 3,5 h) increased MMP-13 promoter-reporter activity approximately two-fold in MC3T3-E1 osteoblast-like cells attended by a comparable increase in mRNA expression. This was accompanied by a decrease in Nmp4/CIZ binding to its cis-element within the PTH response region, the mutation of which abrogated the MMP-13 response to FSS. Interestingly, FSS enhanced Nmp4/CIZ promoter activity and induced p130cas nuclear translocation. We conclude that the PTH regulatory region of MMP-13 also contributes to FSS response and that Nmp4/CIZ plays similar but distinct roles in mediating hormone- and FSS-driven induction of MMP-13 in bone cells. J. Cell. Biochem. 102: 1202,1213, 2007. © 2007 Wiley-Liss, Inc. [source]


    Evidence that both 1,,25-dihydroxyvitamin D3 and 24-hydroxylated D3 enhance human osteoblast differentiation and mineralization

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2006
    M. van Driel
    Abstract Vitamin D plays a major role in the regulation of mineral homeostasis and affects bone metabolism. So far, detailed knowledge on the vitamin D endocrine system in human bone cells is limited. Here we investigated the direct effects of 1,,25-(OH)2D3 on osteoblast differentiation and mineralization. Also, we studied the impact of 24-hydroxylation, generally considered as the first step in the degradation pathway of vitamin D, as well as the role of the nuclear and presumed membrane vitamin D receptor (VDR). For this we used a human osteoblast cell line (SV-HFO) that has the potency to differentiate during culture forming a mineralized extracellular matrix in a 3-week period. Transcriptional analyses demonstrated that both 1,,25-(OH)2D3 and the 24-hydroxylated metabolites 24R,25-(OH)2D3 and 1,,24R,25-(OH)3D3 induced gene transcription. All metabolites dose-dependently increased alkaline phosphatase (ALP) activity and osteocalcin (OC) production (protein and RNA), and directly enhanced mineralization. 1,,24R,25-(OH)3D3 stimulated ALP activity and OC production most potently, while for mineralization it was equipotent to 1,,25-(OH)2D3. The nuclear VDR antagonist ZK159222 almost completely blocked the effects of all metabolites. Interestingly, 1,,25-(OH)2D3, an inhibitor of membrane effects of 1,,25-(OH)2D3 in the intestine, induced gene transcription and increased ALP activity, OC expression and mineralization. In conclusion, not only 1,,25-(OH)2D3, but also the presumed 24-hydroxylated "degradation" products stimulate differentiation of human osteoblasts. 1,,25-(OH)2D3 as well as the 24-hydroxylated metabolites directly enhance mineralization, with the nuclear VDR playing a central role. The intestinal antagonist 1,,25-(OH)2D3 acts in bone as an agonist and directly stimulates mineralization in a nuclear VDR-dependent way. J. Cell. Biochem. 99: 922,935, 2006. © 2006 Wiley-Liss, Inc. [source]


    Transcriptional regulation of collagenase-3 by interleukin-1 alpha in osteoblasts

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2003
    Samuel Varghese
    Abstract Interleukin-1 (IL-1), is an autocrine/paracrine agent of the skeletal tissue and it regulates bone remodeling. Collagenase-3 or matrix metalloproteinase (MMP)-13 is expressed in osteoblasts and its expression is modulated by several cytokines including IL-1,. Because the molecular mechanism of increased synthesis of collagenase-3 in bone cells by IL-1, is not known, we investigated if collagenase-3 expression by IL-1, in osteoblasts is mediated by transcriptional or post-transcriptional mechanisms. Exposure of rat osteoblastic cultures (Ob cells) to IL-1, at concentrations higher than 0.5 nM increased the synthesis of collagenase-3 mRNA up to eightfold and the secretion of immunoreactive protein up to 21-fold. The effects of IL-1, on collagenase-3 were time- and dose-dependent. Although prostaglandins stimulate collagenase-3 expression, stimulation of collagenase-3 in Ob cells by IL-1, was not mediated through increased biosynthesis of prostaglandins. The half-life of collagenase-3 mRNA from control and IL-1,-treated Ob cells was similar suggesting that the stabilization of collagenase-3 mRNA did not contribute to the increase in collagenase-3. However, IL-1, stimulated the rate of transcription of the collagenase-3 gene by twofold to fourfold indicating regulation of collagenase-3 expression in Ob cells at the transcriptional level. Stimulation of collagenase-3 by IL-1, in osteoblasts may in part mediate the effects of IL-1, in bone metabolism. © 2003 Wiley-Liss, Inc. [source]


    ATP and UTP at low concentrations strongly inhibit bone formation by osteoblasts: A novel role for the P2Y2 receptor in bone remodeling

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2002
    Astrid Hoebertz
    Abstract There is increasing evidence that extracellular nucleotides act on bone cells via multiple P2 receptors. The naturally-occurring ligand ATP is a potent agonist at all receptor subtypes, whereas ADP and UTP only act at specific receptor subtypes. We have reported that the formation and resorptive activity of rodent osteoclasts are stimulated powerfully by both extracellular ATP and its first degradation product, ADP, the latter acting at nanomolar concentrations, probably via the P2Y1 receptor subtype. In the present study, we investigated the actions of ATP, ADP, adenosine, and UTP on osteoblastic function. In 16,21 day cultures of primary rat calvarial osteoblasts, ADP and the selective P2Y1 agonist 2-methylthioADP were without effect on bone nodule formation at concentrations between 1 and 125 ,M, as was adenosine. However, UTP, a P2Y2 and P2Y4 receptor agonist, known to be without effect on osteoclast function, strongly inhibited bone nodule formation at concentrations ,,1 ,M. ATP was inhibitory at ,,10 ,M. Rat osteoblasts express P2Y2, but not P2Y4 receptor mRNA, as determined by in situ hybridization. Thus, the low-dose effects of extracellular nucleotides on bone formation and bone resorption appear to be mediated via different P2Y receptor subtypes: ADP, signalling through the P2Y1 receptor on both osteoclasts and osteoblasts, is a powerful stimulator of osteoclast formation and activity, whereas UTP, signalling via the P2Y2 receptor on osteoblasts, blocks bone formation by osteoblasts. ATP, the ,universal' agonist, can simultaneously stimulate resorption and inhibit bone formation. These findings suggest that extracellular nucleotides could function locally as important negative modulators of bone metabolism, perhaps contributing to bone loss in a number of pathological states. J. Cell. Biochem. 86: 413,419, 2002. © 2002 Wiley-Liss, Inc. [source]


    The differential effects of the radioprotectant drugs amifostine and sodium selenite treatment in combination with radiation therapy on constituent bone cells, ewing's sarcoma of bone tumor cells, and rhabdomyosarcoma tumor cells in vitro

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 11 2008
    Bryan S. Margulies
    Abstract The purpose of this study was to determine the differential effects of therapeutic X-radiation on constituent bone cells relative to the pediatric tumor cells: Ewing's sarcoma of bone and rhabdomyosarcoma. In addition, the radioprotectant drugs amifostine and sodium selenite were administered to constituent bone cells and the two tumor cells to determine if the radioprotectants differentially protect bone cells while not benefiting the tumor cells. These studies are a necessary first step in determining the potential clinical benefit of radioprotective therapy. An established in vitro cell culture model employing both constituent bone cells (osteoblasts, primary bone marrow monocytes, osteoclasts chondrocytes, and endothelial cells) and the tumor cells lines (Ewing's sarcoma of bone and rhabdomyosarcoma) were exposed to irradiation, amifostine, and sodium selenite. Cells were then assayed for changes in cell number, cytotoxicity, mineralization, bone resorption, cell attachment, osteocalcin, caspase-3 expression, clonogenic survival, and alkaline phosphatase expression. Radiation therapy differentially decreased cell number; with osteoblasts being shown to be the least sensitive to irradiation, the tumor cells had an intermediate sensitivity and monocytes were the most sensitive. Both amifostine and sodium selenite protected chondrocytes and osteoblasts from the negative effects of irradiation, while not protecting the tumor cells. The pediatric tumor cell lines were generally more radiosensitive than the bone cells examined. The radioprotectant drugs amifostine and sodium selenite provided significant radioprotection to constituent bone cells while not protecting the tumor cells. Finally, amifostine and sodium selenite therapy provided an additional benefit beyond radioprotection by increasing cytotoxicity in nonirradiated and irradiated tumor cells. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:1512,1519, 2008 [source]


    Effect of naringin on bone cells

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 11 2006
    R.W.K. Wong
    Abstract Statin, a HMG-CoA reductase inhibitor, was shown to increase BMP-2 gene expression for bone formation, by blocking the mevalonate pathway in cholesterol production. We investigated the effect of naringin, a flavonoid available commonly in citrus fruits, which was also a HMG-CoA reductase inhibitor, in UMR 106 osteoblastic cell line in vitro. The control group consisted of cells cultured without any intervention for different time intervals (24 h, 48 h, and 72 h), whereas the experimental (naringin) group consisted of cells cultured with naringin of different concentrations (0.001 µmol/L, 0.01 µmol/L, and 0.1 µmol/L) for the same time intervals of the control. Colorimetric Tetrazolium (MTT) assay, total protein content assay, and alkaline phosphatase activity were used to measure the cellular activities. Results for the naringin group showed an increase in MTT assay compared with the control and the effect was dose dependent. At high concentration (0.1 µmol), the increases ranged from 60% to 80%. In the total protein content assay, naringin also showed an increase compared with control and the effect was also dose dependent. At high concentration (0.1 µmol), the increases ranged from 9% to 20%. In the alkaline phosphatase activity assay, naringin at high concentration (0.1 µmol) significantly increased the activity up to 20%. In conclusion, naringin significantly increased bone cell activities in vitro. This is the first study specifically attempted to investigate the effect of naringin on bone cell activities. Besides statin, this provided another example of mevalonate pathway blockage in the cholesterol production pathway by HMG-CoA reductase inhibition will increase the bone cell activities. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 24:2045,2050, 2006 [source]