| |||
Bonded Interface (bonded + interface)
Selected AbstractsIon-Exchanged Glass Laminates that Exhibit a Threshold StrengthJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 8 2007Scott P. Fillery Glass laminates, fabricated to include periodic thin layers containing biaxial compressive stresses, exhibit a threshold strength, i.e., a stress below which failure will not occur. Ion-exchange treatments in KNO3 at 350°,450°C for periods of 3,72 h were used to create residual compressive stresses at the surface of soda lime silicate glass sheets. Wafer direct bonding of the ion-exchanged glass sheets resulted in glass laminates with thin layers of compressive stress adjacent to the glass interface and perpendicular to the laminate top surface. Critical strain energy release measurements of the bonded interface were used to optimize the bonding temperature/time to avoid significant relaxation of the stress produced by ion exchange. Stress profiles, determined via the wafer curvature measurement method, showed a residual compressive stress maximum of 328 MPa for an ion exchange temperature of 450°C. The threshold flexural strength of the ion exchanged glass laminates was determined to be 112 MPa after the introduction of indentation cracks with indent loads ranging from 1 to 5 kg. In contrast to similar ceramic laminates, where cracks either propagate across the compressive layer or bifurcate within the compressive layer, the cracks in the glass laminates were deflected along the interface between the bonded sheets. [source] Micromorphology of resin,dentin interfaces using one-bottle etch&rinse and self-etching adhesive systems on laser-treated dentin surfaces: A confocal laser scanning microscope analysisLASERS IN SURGERY AND MEDICINE, Issue 7 2010Marcelo Tavares de Oliveira DDS Abstract Background and Objectives This study evaluated the hybrid layer (HL) morphology created by three adhesive systems (AS) on dentin surfaces treated with Er:YAG laser using two irradiation parameters. Study Design Occlusal flat dentin surfaces of 36 human third molars were assigned into nine groups (n,=,4) according to the following ASs: one bottle etch&rinse Single Bond Plus (3M ESPE), two-step Clearfil Protect Bond (Kuraray), and all-in-one S3 Bond (Kuraray) self-etching, which were labeled with rhodamine B or fluorescein isothiocyanate,dextran and were applied to dentin surfaces that were irradiated with Er:YAG laser at either 120 (38.7,J/cm2) or 200,mJ/pulse (64.5,J/cm2), or were applied to untreated dentin surfaces (control group). The ASs were light-activated following MI and the bonded surfaces were restored with resin composite Z250 (3M ESPE). After 24,hours of storage in vegetable oil, the restored teeth were vertically, serially sectioned into 1-mm thick slabs, which had the adhesive interfaces analyzed with confocal laser microscope (CLSM,LSM 510 Meta). CLSM images were recorded in the fluorescent mode from three different regions along each bonded interface. Results Non-uniform HL was created on laser-irradiated dentin surfaces regardless of laser irradiation protocol for all AS, while regular and uniform HL was observed in the control groups. "Stretch mark"-like red lines were found within the HL as a result of resin infiltration into dentin microfissures, which were predominantly observed in 200,mJ/pulse groups regardless of AS. Poor resin infiltration into peritubular dentin was observed in most regions of adhesive interfaces created by all ASs on laser-irradiated dentin, resulting in thin resin tags with neither funnel-shaped morphology nor lateral resin projections. Conclusion Laser irradiation of dentin surfaces at 120 or 200,mJ/pulse resulted in morphological changes in HL and resin tags for all ASs evaluated in the study. Lasers Surg. Med. 42:662,670, 2010. © 2010 Wiley-Liss, Inc. [source] Chemical Bonding of Fullerene and Fluorinated Fullerene on Bare and Hydrogenated DiamondCHEMPHYSCHEM, Issue 9 2008Ti Ouyang Abstract We investigate the interface between a C60 fullerite film, C60F36, and diamond (100) by using core-level photoemission spectroscopy, cyclic voltammetry (CV), and high-resolution electron energy loss spectroscopy (HREELS). We show that C60 can be covalently bonded to reconstructed C(100)-2×1 and that the bonded interface is sufficiently robust to exhibit characteristic C60 redox peaks in solution. The bare diamond surface can be passivated against oxidation and hydrogenation by covalently bound C60. However, C60F36 is not as stable as C60 and desorbs below 300,°C (the latter species being stable up to 500,°C on the diamond surface). Neither C60 fullerite nor C60F36 form reactive interfaces on the hydrogenated surface,they both desorb below 300,°C. The surface transfer doping process of hydrogenated diamond by C60F36 is the most evident one among all the adsorbate systems studied (with a coverage-dependent band bending induced by C60F36). [source] Sealing ability of occlusal resin composite restoration using four restorative proceduresEUROPEAN JOURNAL OF ORAL SCIENCES, Issue 6 2008Danuchit Banomyong The purpose of this work was to investigate fluid flow after restoration using four restorative procedures. Micro-gap, internal dye leakage, and micropermeability of bonded interfaces were also investigated. Each tooth was mounted, connected to a fluid flow-measuring device, and an occlusal cavity was prepared. Fluid flow after cavity preparation was recorded as the baseline measurement, and the cavity was restored using one of four restorative procedures: bonding with total-etch (Single Bond 2) or self-etch (Clearfil SE Bond) adhesives without lining; or lining with resin-modified glass-ionomer cement (GIC) (Fuji Lining LC) or conventional GIC (Fuji IX) and then bonding with the total-etch adhesive. Fluid flow was recorded after restoration and at specific time-points up to 6 months thereafter and recorded as a percentage. Micro-gap formation was analyzed using resin replicas and scanning electron microscopy. Internal leakage of 2% methylene blue dye was observed under a light microscope. In micro-permeability testing, fluorescent-dye penetration was investigated using confocal laser microscopy. None of the restorative procedures provided a perfectly sealed restoration. Glass-ionomer lining did not reduce fluid flow after restoration, and micro-gaps were frequently detected. The self-etch adhesive failed to provide a better seal than the total-etch adhesive, and even initial gap formation was rarely observed for the former. Penetration of methylene blue and fluorescent dyes was detected in most restorations. [source] Influence of whitening on the degree of conversion of dental adhesives on dentinEUROPEAN JOURNAL OF ORAL SCIENCES, Issue 3 2006Milena Cadenaro The aim of this study was to analyze the extent of polymerization of different adhesive systems on whitened dentin. One adhesive of each class was investigated: Adper Scotchbond Multi Purpose (3M ESPE); One-Step (Bisco); Clearfil Protect Bond (Kuraray); and Xeno III (Dentsply DeTrey). Dentin disks were treated with Opalescence Xtra Boost (Ultradent) for 30 min and bonded immediately after 24 h or after 14 d of storage in 100% humidity at 37°C. Unbleached dentin disks were prepared as controls. The extent of polymerization of bonded interfaces was obtained with differential scanning calorimetry (DSC) at 20, 40 and 60 s, and the data were statistically analyzed. The extent of polymerization obtained from DSC exotherms of adhesives applied immediately after whitening was significantly lower compared with controls. An increased extent of polymerization after storage was confirmed for all adhesives, and no difference with controls was found after 14 d. A prolonged irradiation time increased the curing rate for all the tested adhesives. This study supports the hypothesis that polymerization of the adhesive is reduced after dentin whitening and that delayed adhesive application reverses the polymerization inhibition. Prolonged polymerization intervals may counteract the inhibition of polymerization caused by the whitening procedure. Nevertheless, further in vivo studies should validate this issue. [source] |