| |||
Bovine Mitochondria (bovine + mitochondria)
Selected AbstractsTranslation ability of mitochondrial tRNAsSer with unusual secondary structures in an in vitro translation system of bovine mitochondriaGENES TO CELLS, Issue 12 2001Takao Hanada Background Metazoan mitochondrial (mt) tRNAs are structurally quite different from the canonical cloverleaf secondary structure. The mammalian mt tRNASerGCU for AGY codons (Y = C or U) lacks the entire D arm, whereas tRNASerUGA for UCN codons (N = A, G, C or U) has an extended anti-codon stem. It has been a long-standing problem to prove experimentally how these tRNAsSer work in the mt translation system. Results To solve the above-mentioned problem, we examined their translational abilities in an in vitro bovine mitochondrial translation system using transcripts of altered tRNASer analogues derived from bovine mitochondria. Both tRNASer analogues had almost the same ability to form ternary complexes with mt EF-Tu and GTP. The D-arm-lacking tRNASer GCU analogue had considerably lower translational activity than the tRNASerUGA analogue and produced mostly short oligopeptides, up to a tetramer. In addition, tRNASerGCU analogue was disfavoured by the ribosome when other tRNAs capable of decoding the cognate codon were available. Conclusion Both mt tRNASerGCU and tRNASerUGA analogues with unusual secondary structure were found to be capable of translation on the ribosome. However, the tRNASerGCU analogue has some molecular disadvantage on the ribosome, which probably derives from the lack of a D arm. [source] Supercomplex organization of the mitochondrial respiratory chain and the role of the Coenzyme Q pool: Pathophysiological implicationsBIOFACTORS, Issue 1-4 2005Maria Luisa Genova Abstract In this review we examine early and recent evidence for an aggregated organization of the mitochondrial respiratory chain. Blue Native Electrophoresis suggests that in several types of mitochondria Complexes I, III and IV are aggregated as fixed supramolecular units having stoichiometric proportions of each individual complex. Kinetic evidence by flux control analysis agrees with this view, however the presence of Complex IV in bovine mitochondria cannot be demonstrated, presumably due to high levels of free Complex. Since most Coenzyme Q appears to be largely free in the lipid bilayer of the inner membrane, binding of Coenzyme Q molecules to the Complex I-III aggregate is forced by its dissociation equilibrium; furthermore free Coenzyme Q is required for succinate-supported respiration and reverse electron transfer. The advantage of the supercomplex organization is in a more efficient electron transfer by channelling of the redox intermediates and in the requirement of a supramolecular structure for the correct assembly of the individual complexes. Preliminary evidence suggests that dilution of the membrane proteins with extra phospholipids and lipid peroxidation may disrupt the supercomplex organization. This finding has pathophysiological implications, in view of the role of oxidative stress in the pathogenesis of many diseases. [source] The expression, purification, crystallization and preliminary X-ray analysis of a subcomplex of the peripheral stalk of ATP synthase from bovine mitochondriaACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 6 2006Jocelyn A. Silvester A subcomplex of the peripheral stalk or stator domain of the ATP synthase from bovine mitochondria has been expressed to high levels in a soluble form in Escherichia coli. The subcomplex consists of residues 79,184 of subunit b, residues 1,124 of subunit d and the entire F6 subunit (76 residues). It has been purified and crystallized by vapour diffusion. The morphology and diffraction properties of the crystals of the subcomplex were improved by the presence of thioxane or 4-methylpyridine in the crystallization liquor. With a synchrotron-radiation source, these crystals diffracted to 2.8,Å resolution. They belong to the monoclinic space group P21. [source] |