| |||
Bovine Enamel (bovine + enamel)
Selected AbstractsONE-YEAR TENSILE BOND STRENGTHS OF TWO SELF-ETCHING PRIMERS TO BOVINE ENAMELJOURNAL OF ESTHETIC AND RESTORATIVE DENTISTRY, Issue 4 2004John M. Powers PhD [source] Bleaching Agents with Varying Concentrations of Carbamide and/or Hydrogen Peroxides: Effect on Dental Microhardness and RoughnessJOURNAL OF ESTHETIC AND RESTORATIVE DENTISTRY, Issue 6 2008JULIANA JENDIROBA FARAONI-ROMANO DDS ABSTRACT Purpose:, To evaluate the effect of low and highly concentrated bleaching agents on microhardness and surface roughness of bovine enamel and root dentin. Methods:, According to a randomized complete block design, 100 specimens of each substrate were assigned into five groups to be treated with bleaching agents containing carbamide peroxide (CP) at 10% (CP10); hydrogen peroxide (HP) at 7.5% (HP7.5) or 38% (HP38), or the combination of 18% of HP and 22% of CP (HP18/CP22), for 3 weeks. The control group was left untreated. Specimens were immersed in artificial saliva between bleaching treatments. Knoop surface microhardness (SMH) and average surface roughness (Ra) were measured at baseline and post-bleaching conditions. Results:, For enamel, there were differences between bleaching treatments for both SMH and Ra measurements (p = 0.4009 and p = 0.7650, respectively). SMH significantly increased (p < 0.0001), whereas Ra decreased (p = 0.0207) from baseline to post-bleaching condition. For root dentin, the group treated with CP10 exhibited the significantly highest SMH value differing from those groups bleached with HP18/CP22, HP7.5, which did not differ from each other. Application of HP38 resulted in intermediate SMH values. No significant differences were found for Ra (p = 0.5975). Comparing the baseline and post-bleaching conditions, a decrease was observed in SMH (p < 0.0001) and an increase in Ra (p = 0.0063). Conclusion:, Bleaching agents with varying concentrations of CP and/or HP are capable of causing mineral loss in root dentin. Enamel does not perform in such bleaching agent-dependent fashion when one considers either hardness or surface roughness evaluations. CLINICAL SIGNIFICANCE Bleaching did not alter the enamel microhardness and surface roughness, but in root dentin, microhardness seems to be dependent on the bleaching agent used. [source] Microradiographic study on the effects of salivary proteins on in vitro demineralization of bovine enamelJOURNAL OF ORAL REHABILITATION, Issue 2 2005A. M. KIELBASSA summary, The aim of this investigation was to evaluate the effects of various proteins on in vitro demineralization of bovine enamel. From each of 100 bovine incisors two samples were prepared. The specimens were embedded in epoxy resin and polished up to 4000 grit. Subsequently, the specimens' surfaces were partly covered with nail varnish, thus serving as control of sound enamel. The specimens were divided randomly into five groups (n = 40) and demineralized in a solution of constant composition (pH 5·0; 10 days). For each subgroup of specimens (n = 10) 4 L were taken and either low (50% of medium conc.), medium, or high (150%) concentrations of the proteins [human albumin (100% conc. = 7 mg L,1), mucin (577·5 mg L,1), immunoglobulin G (IgG) (46 mg L,1), casein isolated from bovine milk (1·2 g L,1)] or amino acid [l -Proline (7 mg L,1)] were added to 1 L of the demineralizing solution, whereas 1 L served as control. Mineral loss and lesion depth (LD) were evaluated from microradiographs of thin sections (110 ,m) by a dedicated software package (TMR 1.24). No differences were found between the five control groups (P > 0·05; anova). Albumin, l -Proline, and IgG did not affect enamel demineralization, whereas the addition of both casein and mucin resulted in significant reductions of both mineral loss and LDs (P < 0·01; Tukey's test). Within the limitations of an in vitro study, the present investigation indicates that casein and mucin seem to affect enamel demineralization significantly. Thus, these proteins might be helpful as an additive to saliva substitutes or mouthwashes if the quality of saliva is altered. [source] Preventive effect of iron gel with or without fluoride on bovine enamel erosion in vitroAUSTRALIAN DENTAL JOURNAL, Issue 2 2010MG Bueno Abstract Background:, The aim of this study was to evaluate the preventive effect in vitro of experimental gel containing iron and/or fluoride on the erosion of bovine enamel. Methods:, To standardize the blocks (n = 80), specimens (4 × 4 mm) were previously selected to measure the initial microhardness. The blocks were randomly allocated into four groups of 20 samples each: C (control, placebo gel); F (fluoride gel, 1.23% NaF); Fe (iron gel, 10 mmol/L FeSO4) and F + Fe (fluoride + iron gel). The gels were applied and removed after 1 minute. The blocks were then submitted to six alternating remineralization and demineralization cycles. The beverage Coca-Cola® (10 minutes, 30 mL) was used for demineralization, and artificial saliva (1 hour) for remineralization. The effect of erosion was measured by wear analysis (profilometry). Data were analysed by ANOVA and the Tukey test for individual comparisons (p <0.05). Results:, The mean wear (± SD, ,m) was C: 0.94 ± 0.22; F: 0.55 ± 0.12; Fe: 0.49 ± 0.11 and F + Fe: 0.55 ± 0.13. When the experimental gels were used, there was statistically significant reduction in enamel wear in comparison with the control (p <0.001). However, the experimental gels did not differ significantly among them. Conclusions:, The gels containing iron with or without fluoride are capable of interfering with the dissolution dental enamel in the presence of erosive challenge. [source] |