Bovine Brain (bovine + brain)

Distribution by Scientific Domains


Selected Abstracts


Neurogenesis in explants from the walls of the lateral ventricle of adult bovine brain: role of endogenous IGF-1 as a survival factor

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2003
M. Pérez-Martín
Abstract Previous studies have shown the existence of proliferating cells in explants from bovine (Bos Taurus) lateral ventricle walls that were maintained for several days in vitro in the absence of serum and growth factors. In this study we have characterized the nature of new cells and have assessed whether the insulin-like growth factor-1 (IGF-1) receptor regulates their survival and/or proliferation. The explants were composed of the ependymal layer and attached subependymal cells. Ependymal cells in culture were labelled with glial markers (S-100, vimentin, GFAP, BLBP, 3A7 and 3CB2) and did not incorporate bromodeoxiuridine when this molecule was added to the culture media. Most subependymal cells were immunoreactive for ,III-tubulin, a neuronal marker, and did incorporate bromodeoxiuridine. Subependymal neurons displayed immunoreactivity for IGF-1 and its receptor and expressed IGF-1 mRNA, indicating that IGF-1 is produced in the explants and may act on new neurons. Addition to the culture media of an IGF-1 receptor antagonist, the peptide JB1, did not affect the incorporation of bromodeoxiuridine to proliferating subependymal cells. However, JB1 significantly increased the number of TUNEL positive cells in the subependymal zone, suggesting that IGF-1 receptor is involved in the survival of subependymal neurons. In conclusion, these findings indicate that neurogenesis is maintained in explants from the lateral cerebral ventricle of adult bovine brains and that IGF-1 is locally produced in the explants and may regulate the survival of the proliferating neurons. [source]


Inactivation of calcineurin by hydrogen peroxide and phenylarsine oxide

FEBS JOURNAL, Issue 5 2000
Evidence for a dithiol, disulfide equilibrium, implications for redox regulation
Calcineurin (CaN) is a Ca2+ -and calmodulin (CaM)-dependent serine/threonine phosphatase containing a dinuclear Fe,Zn center in the active site. Recent studies have indicated that CaN is a possible candidate for redox regulation. The inactivation of bovine brain CaN and of the catalytic CaN A-subunit from Dictyostelium by the vicinal dithiol reagents phenylarsine oxide (PAO) and melarsen oxide (MEL) and by H2O2 was investigated. PAO and MEL inhibited CaN with an IC50 of 3,8 µm and the inactivation was reversed by 2,3-dimercapto-1-propane sulfonic acid. The treatment of isolated CaN with hydrogen peroxide resulted in a concentration-dependent inactivation. Analysis of the free thiol content performed on the H2O2 inactivated enzyme demonstrated that only two or three of the 14 Cys residues in CaN are modified. The inactivation of CaN by H2O2 could be reversed with 1,4-dithiothreitol and with the dithiol oxidoreductase thioredoxin. We propose that a bridging of two closely spaced Cys residues in the catalytic CaN A-subunit by PAO/MEL or the oxidative formation of a disulfide bridge by H2O2 involving the same Cys residues causes the inactivation. Our data implicate a possible involvement of thioredoxin in the redox control of CaN activity under physiological conditions. The low temperature EPR spectrum of the native enzyme was consistent with a Fe3+,Zn2+ dinuclear centre. Upon H2O2 -mediated inactivation of the enzyme no significant changes in the EPR spectrum were observed ruling out that Fe2+ is present in the active enzyme and that the dinuclear metal centre is the target for the oxidative inactivation of CaN. [source]


The Complementary Membranes Forming the Blood-Brain Barrier

IUBMB LIFE, Issue 3 2002
Richard A. Hawkins
Abstract Brain capillary endothelial cells form the blood-brain barrier. They are connected by extensive tight junctions, and are polarized into luminal (blood-facing) and abluminal (brain-facing) plasma membrane domains. The polar distribution of transport proteins allows for active regulation of brain extracellular fluid. Experiments on isolated membrane vesicles from capillary endothelial cells of bovine brain demonstrated the polar arrangement of amino acid and glucose transporters, and the utility of such arrangements have been proposed. For instance, passive carriers for glutamine and glutamate have been found only in the luminal membrane of blood-brain barrier cells, while Na-dependent secondary active transporters are at the abluminal membrane. This organization could promote the net removal of nitrogen-rich amino acids from brain, and account for the low level of glutamate penetration into the central nervous system. Furthermore, the presence of a ,-glutamyl cycle at the luminal membrane and Na-dependent amino acid transporters at the abluminal membrane may serve to modulate movement of amino acids from blood-to-brain. Passive carriers facilitate amino acid transport into brain. However, activation of the ,-glutamyl cycle by increased plasma amino acids is expected to generate oxoproline within the blood-brain barrier. Oxoproline stimulates secondary active amino acid transporters (Systems A and B o,+ ) at the abluminal membrane, thereby reducing net influx of amino acids to brain. Finally, passive glucose transporters are present in both the luminal and abluminal membranes of the blood-brain barrier. Interestingly, a high affinity Na-dependent glucose carrier has been described only in the abluminal membrane. This raises the question whether glucose entry may be regulated to some extent. Immunoblotting studies suggest more than one type of passive glucose transporter exist in the blood-brain barrier, each with an asymmetrical distribution. In conclusion, it is now clear that the blood-brain barrier participates in the active regulation of brain extracellular fluid, and that the diverse functions of each plasma membrane domain contributes to these regulatory functions. [source]


Regulation of Mg2+ -independent Ca2+ -ATPase by a low molecular mass protein purified from bovine brain

BIOFACTORS, Issue 4 2006
Srabasti Ghoshal
Abstract The goat sperm microsomal membranes have been found to contain an Mg2+ -independent Ca2+ -ATPase, a low affinity but highly active enzyme sharing similarities with the SERCA family of ATPases. The present study reports the identification and characterization of a 14 kilodalton cytosolic protein from bovine brain which can act as an endogenous stimulator of the enzyme with an S50 (concentration producing 50% stimulation) of 0.8 , molar. Kinetic analysis suggests that the stimulation is noncompetitive with respect to the substrate, and the binding site(s) of the stimulator and substrate are distinct. Binding of the stimulator to the enzyme is reversible. The stimulator increases the affinity of the enzyme for calcium as evident from a decrease in K0.5 of the enzyme for calcium in presence of the stimulator. Radioactive labeling of the enzyme with [,;- 32P]-ATP suggests that the stimulator enhances the rate of dephosphorylation of the phosphoenzyme intermediate without altering the phosphorylation reaction step. The stimulatory effect of the protein has been observed only for the Mg2+ -independent form of the enzyme, the Mg2+ -dependent form being unaffected. [source]


Neurogenesis in explants from the walls of the lateral ventricle of adult bovine brain: role of endogenous IGF-1 as a survival factor

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2003
M. Pérez-Martín
Abstract Previous studies have shown the existence of proliferating cells in explants from bovine (Bos Taurus) lateral ventricle walls that were maintained for several days in vitro in the absence of serum and growth factors. In this study we have characterized the nature of new cells and have assessed whether the insulin-like growth factor-1 (IGF-1) receptor regulates their survival and/or proliferation. The explants were composed of the ependymal layer and attached subependymal cells. Ependymal cells in culture were labelled with glial markers (S-100, vimentin, GFAP, BLBP, 3A7 and 3CB2) and did not incorporate bromodeoxiuridine when this molecule was added to the culture media. Most subependymal cells were immunoreactive for ,III-tubulin, a neuronal marker, and did incorporate bromodeoxiuridine. Subependymal neurons displayed immunoreactivity for IGF-1 and its receptor and expressed IGF-1 mRNA, indicating that IGF-1 is produced in the explants and may act on new neurons. Addition to the culture media of an IGF-1 receptor antagonist, the peptide JB1, did not affect the incorporation of bromodeoxiuridine to proliferating subependymal cells. However, JB1 significantly increased the number of TUNEL positive cells in the subependymal zone, suggesting that IGF-1 receptor is involved in the survival of subependymal neurons. In conclusion, these findings indicate that neurogenesis is maintained in explants from the lateral cerebral ventricle of adult bovine brains and that IGF-1 is locally produced in the explants and may regulate the survival of the proliferating neurons. [source]