Boundary Element Methods (boundary + element_methods)

Distribution by Scientific Domains


Selected Abstracts


An improved meshless collocation method for elastostatic and elastodynamic problems

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 8 2008
P. H. Wen
Abstract Meshless methods for solving differential equations have become a promising alternative to the finite element and boundary element methods. In this paper, an improved meshless collocation method is presented for use with either moving least square (MLS) or compactly supported radial basis functions (RBFs). A new technique referred to as an indirect derivative method is developed and compared with the direct derivative technique used for evaluation of second-order derivatives and higher-order derivatives of the MLS and RBF shape functions at the field point. As the derivatives are obtained from a local approximation (MLS or compact support RBFs), the new method is computationally economical and efficient. Neither the connectivity of mesh in the domain/boundary nor integrations with fundamental/particular solutions is required in this approach. The accuracy of the two techniques to determine the second-order derivative of shape function is assessed. The applications of meshless method to two-dimensional elastostatic and elastodynamic problems have been presented and comparisons have been made with benchmark analytical solutions. Copyright 2007 John Wiley & Sons, Ltd. [source]


Efficiency of boundary element methods for time-dependent convective heat diffusion at high Peclet numbers

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 4 2005
M. M. Grigoriev
Abstract A higher-order boundary element method (BEM) recently developed by the current authors (Comput Methods Appl Mech Eng 2003; 192: 4281,4298; 4299,4312; 4313,4335) for time-dependent convective heat diffusion in two-dimensions appears to be a very attractive tool for efficient simulations of transient linear flows. However, the previous BEM formulation is restricted to relatively small time step sizes (i.e. ,t,4,/V2) owing to the convergence issues of the time series for the kernel representation within a time interval. This paper extends the boundary element formulation in a way to allow time step sizes several orders of magnitude larger than in the previous approach. We consider an example problem of thermal propagation, and investigate the accuracy and efficiency of BEM formulations for Peclet numbers in the range from 103 to 105. Copyright 2005 John Wiley & Sons, Ltd. [source]


Evaluation of well performance using the coupling of boundary element with finite element methods

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 11 2004
L. Jeannin
Abstract In this paper, we apply an FEM,BEM coupling method in petroleum engineering to evaluate complex wells (or fractures) performance. We use boundary element methods around wells and fractures, and finite elements in the remaining part of the reservoir. Copyright 2004 John Wiley & Sons, Ltd. [source]


Efficient non-linear solid,fluid interaction analysis by an iterative BEM/FEM coupling

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 11 2005
D. Soares Jr
Abstract An iterative coupling of finite element and boundary element methods for the time domain modelling of coupled fluid,solid systems is presented. While finite elements are used to model the solid, the adjacent fluid is represented by boundary elements. In order to perform the coupling of the two numerical methods, a successive renewal of the variables on the interface between the two subdomains is performed through an iterative procedure until the final convergence is achieved. In the case of local non-linearities within the finite element subdomain, it is straightforward to perform the iterative coupling together with the iterations needed to solve the non-linear system. In particular a more efficient and a more stable performance of the new coupling procedure is achieved by a special formulation that allows to use different time steps in each subdomain. Copyright 2005 John Wiley & Sons, Ltd. [source]


A fast multi-level convolution boundary element method for transient diffusion problems

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 14 2005
C.-H. Wang
Abstract A new algorithm is developed to evaluate the time convolution integrals that are associated with boundary element methods (BEM) for transient diffusion. This approach, which is based upon the multi-level multi-integration concepts of Brandt and Lubrecht, provides a fast, accurate and memory efficient time domain method for this entire class of problems. Conventional BEM approaches result in operation counts of order O(N2) for the discrete time convolution over N time steps. Here we focus on the formulation for linear problems of transient heat diffusion and demonstrate reduced computational complexity to order O(N3/2) for three two-dimensional model problems using the multi-level convolution BEM. Memory requirements are also significantly reduced, while maintaining the same level of accuracy as the conventional time domain BEM approach. Copyright 2005 John Wiley & Sons, Ltd. [source]


Potential flow around obstacles using the scaled boundary finite-element method

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 7 2003
Andrew J. Deeks
Abstract The scaled boundary finite-element method is a novel semi-analytical technique, combining the advantages of the finite element and the boundary element methods with unique properties of its own. The method works by weakening the governing differential equations in one co-ordinate direction through the introduction of shape functions, then solving the weakened equations analytically in the other (radial) co-ordinate direction. These co-ordinate directions are defined by the geometry of the domain and a scaling centre. The method can be employed for both bounded and unbounded domains. This paper applies the method to problems of potential flow around streamlined and bluff obstacles in an infinite domain. The method is derived using a weighted residual approach and extended to include the necessary velocity boundary conditions at infinity. The ability of the method to model unbounded problems is demonstrated, together with its ability to model singular points in the near field in the case of bluff obstacles. Flow fields around circular and square cylinders are computed, graphically illustrating the accuracy of the technique, and two further practical examples are also presented. Comparisons are made with boundary element and finite difference solutions. Copyright 2003 John Wiley & Sons, Ltd. [source]