Boc Protection (boc + protection)

Distribution by Scientific Domains


Selected Abstracts


Asymmmetric Diamino Functionalization of Nanotubes Assisted by BOC Protection and Their Epoxy Nanocomposites

ADVANCED FUNCTIONAL MATERIALS, Issue 18 2010
Yao Zhao
Abstract Homogenous dispersion and strong interfacial bonding are prerequisites for taking full advantage of the mechanical properties of nanotubes in a composite. In order to simultaneously achieve both conditions, a highly efficient and mechanically non-destructive functionalization of nanotubes is developed. With fluoronanotubes as the precursor, asymmetric diamine molecules, N -BOC-1,6-diaminohexane, are used to replace fluorines on the wall of fluoronanotubes and construct covalent bonding to the surface of the nanotubes. A BOC de-protection reaction is conducted and the resulting exposed amino groups create strong covalent bonds with the matrix in the course of epoxy ring-opening etherification and curing chemical reactions. In comparison with the conventional functionalization based on symmetric diamine molecules, the functionalized nanotubes derived from the BOC-protected diamine molecule are more dispersed within the epoxy matrix. Dynamic mechanical analysis shows that the functionalized nanotubes have better crosslinking with the matrix. The composites reinforced by the nanotubes demonstrate improvement in various mechanical properties. The Young's Modulus, ultimate tensile strength, and storage modulus of composites loaded with 0.5 wt% functionalized nanotubes are enhanced by 30%, 25%, and 10%, respectively, compared with the neat epoxy. The increase of the glass transition temperature, as much as 10 °C, makes the composites suited for engineering applications under higher temperatures. The new functionalization method allows for an competitive enhancement in the composite performance in use of relatively low cost raw nanotubes at a small loading level. The reinforcement mechanism of the functionalized nanotubes in the epoxy resin is discussed. [source]


Oxime Carbonates: Novel Reagents for the Introduction of Fmoc and Alloc Protecting Groups, Free of Side Reactions

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 17 2010
Sherine N. Khattab
Abstract Fmoc and Alloc protecting groups represent a consistent alternative to classical Boc protection in peptide chemistry. The former was established in the last decades as the ,-amino protecting group of choice, whereas the latter allows a fully orthogonal protection strategy with Fmoc and Boc. Usually, the introduction of the Fmoc and Alloc moieties takes place through their halogenoformates, azides, or activated carbonates. This rather simple reaction is accompanied by several side reactions, specially the formation of Fmoc/Alloc dipeptides and even tripeptides. The present work describes new promising Fmoc/Alloc-oxime reagents, which are easy to prepare, stable, and highly reactive crystalline materials that afford almost contaminant-free Fmoc/Alloc-amino acids in high yields by following a conventional procedure. Amongst the Fmoc-oxime derivatives, the N -hydroxypicolinimidoyl cyanide derivative (N -{[(9H-fluoren-9-yl)methoxy]carbonyloxy}picolinimidoyl cyanide) gave the best results for the preparation of Fmoc-Gly-OH, which is the most predisposed to give side reactions. The same Alloc-oxime analogue afforded the preparation of Alloc-Gly-OH in good yield, purity, and extremely low dipeptide formation, as analyzed by reverse-phase HPLC and NMR spectroscopy. [source]


Preparation of the ,3 -Homoselenocysteine Derivatives Fmoc- ,3hSec(PMB)-OH and Boc- ,3hSec(PMB)-OH for Solution and Solid-Phase-Peptide Synthesis and Selenoligation

HELVETICA CHIMICA ACTA, Issue 9 2007
Oliver Flögel
Abstract The title compounds, 4 and 7, have been prepared from the corresponding , -amino acid derivative selenocystine (1) by the following sequence of steps: cleavage of the SeSe bond with NaBH4, p -methoxybenzyl (PMB) protection of the SeH group, Fmoc or Boc protection at the N-atom and Arndt,Eistert homologation (Schemes,1 and 2). A ,3 -heptapeptide 8 with an N-terminal ,3 -hSec(PMB) residue was synthesized on Rink amide AM resin and deprotected (,in air') to give the corresponding diselenide 9, which, in turn, was coupled with a ,3 -tetrapeptide thiol ester 10 by a seleno-ligation. The product ,3 -undecapeptide was identified as its diselenide and its mixed selenosulfide with thiophenol (Scheme,3). The differences between , - and , -Sec derivatives are discussed. [source]


The Nonchiral Bislactim Diethoxy Ether as a Highly Stereo-Inducing Synthon for Sterically Hindered, , -Branched , -Amino Acids: A Practical, Large-Scale Route to an Intermediate of the Novel Renin Inhibitor Aliskiren

HELVETICA CHIMICA ACTA, Issue 8 2003
Richard Göschke
The diastereoselective synthesis of the sterically hindered, , -branched , -amino acid derivative (2S,4S)- 24a and its N -[(tert -butoxy)carbonyl](Boc)-protected alcohol (2S,4S)- 19, both key intermediates of a novel class of nonpeptide renin inhibitors such as aliskiren (1), is described. Initially, the analogous methyl ester (2S,4S)- 17 was obtained by alkylation of the chiral Schöllkopf dihydropyrazine (R)- 12a with the dialkoxy-substituted alkyl bromide (R)- 11a, which proceeded with explicitly high diastereofacial selectivity (ds ,98%) to give (2S,5R,2,S)- 13a (Scheme,4), followed by mild acid hydrolysis and N -Boc protection (Scheme,5). Conversely, the complete lack of stereocontrol and poor yields for the reaction of (R)- 11a with the enantiomeric (S)- 12b suggested, in addition to the anticipated shielding effect by the iPr group at C(2) of the auxiliary, steric repulsion between the MeOC(6) and the bulky residues of (R)- 11a in the proposed transition state, which would strongly disfavor both the Si and Re attack of the electrophile (see Fig.). Based on this rationale, alkylation of the readily accessible achiral diethoxy-dihydropyrazine 21 with (R)- 11a was found to provide a 95,:,5 mixture of diastereoisomers (2S,2,S)- 22a and (2R,2,S)- 23a in high yield (Scheme,6), which afforded in two steps and after recrystallization enantiomerically pure (2S,4S)- 24a. Similarly, the stereochemical course for the alkylation reactions of the related alkyl bromides (S)- 28a and (R)- 28b with both (R)- 12a and (S)- 12b as well as with the achiral 21 was investigated (Schemes,7,9). The precursor bromides (R)- 11a, (S)- 11b, (R)- 28a, and (S)- 28b were efficiently synthesized via the diastereoselective alkylation of the Evans 3-isovaleroyloxazolidin-2-ones (R)- 7a and (S)- 7b either with bromide 6 or with benzyl chloromethyl ether, and subsequent standard transformations (Schemes,3 and 7). A practical and economical protocol of the preparation of (2S,4S)- 24a on a multi-100-g scale is given. This is the first report of the application of an achiral dihydropyrazine, i.e., in form of 21, as a highly stereo-inducing synthon providing rapid access to a N -protected , -branched , -amino acid with (2S) absolute configuration. [source]


An Efficient Method for the Synthesis of Peptide Aldehyde Libraries Employed in the Discovery of Reversible SARS Coronavirus Main Protease (SARS-CoV Mpro) Inhibitors

CHEMBIOCHEM, Issue 7 2006
Samer I. Al-Gharabli Dr.
Abstract A method for the parallel solid-phase synthesis of peptide aldehydes has been developed. Protected amino acid aldehydes obtained by the racemization-free oxidation of amino alcohols with Dess,Martin periodinane were immobilized on threonyl resins as oxazolidines. Following Boc protection of the ring nitrogen to yield the N-protected oxazolidine linker, peptide synthesis was performed efficiently on this resin. A peptide aldehyde library was designed for targeting the SARS coronavirus main protease, SARS-CoV Mpro(also known as 3CLpro), on the basis of three different reported binding modes and supported by virtual screening. A set of 25 peptide aldehydes was prepared by this method and investigated in inhibition assays against SARS-CoV Mpro. Several potent inhibitors were found with IC50 values in the low micromolar range. An IC50 of 7.5 ,M was found for AcNSTSQ-H and AcESTLQ-H. Interestingly, the most potent inhibitors seem to bind to SARS-CoV Mpro in a noncanonical binding mode. [source]