| |||
Bladder Epithelial Cells (bladder + epithelial_cell)
Selected AbstractsMechanisms and consequences of bladder cell invasion by uropathogenic Escherichia coliEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 2008B. K. Dhakal ABSTRACT Strains of uropathogenic Escherichia coli (UPEC) are the major cause of urinary tract infections worldwide. Multiple studies over the past decade have called into question the dogmatic view that UPEC strains act as strictly extracellular pathogens. Rather, bacterial expression of filamentous adhesive organelles known as type 1 pili and Afa/Dr fibrils enable UPEC to invade host epithelial cells within the urinary tract. Entry into bladder epithelial cells provides UPEC with a protected niche where the bacteria can persist quiescently for long periods, unperturbed by host defences and protected from many antibiotic treatments. Alternately, internalized UPEC can rapidly multiply, forming large intracellular inclusions that can contain several thousand bacteria. Initial work aimed at defining the host and bacterial factors that modulate the entry, intracellular trafficking, and eventual resurgence of UPEC suggests a high degree of host-pathogen crosstalk. Targeted disruption of these processes may provide a novel means to prevent and treat recurrent, relapsing and chronic infections within the urinary tract. [source] Adenosine receptor expression in Escherichia coli -infected and cytokine-stimulated human urinary tract epithelial cellsBJU INTERNATIONAL, Issue 11 2009Susanne Säve OBJECTIVE To assess the expression and regulation of adenosine receptors in unstimulated, uropathogenic Escherichia coli (UPEC)-infected and cytokine-stimulated human urinary tract epithelial cells, and to examine the regulation of interleukin (IL)-6 secretion in response to A2A receptor activation. MATERIALS AND METHODS Human urinary tract epithelial cells (A498, T24 and RT4) were grown in cell culture and stimulated with a mixture of pro-inflammatory cytokines (CM) or UPEC. The expression of adenosine receptors was evaluated using semiquantitative reverse transcription-polymerase chain reaction (RT-PCR), Western blot analysis and immunocytochemistry. IL-6 secretion was measured with an enzyme-linked immunosorbent assay. RESULTS RT-PCR analysis showed the presence of transcripts for the A1, A2A and A2B receptor subtypes but not for the A3 receptor in A498 kidney epithelial cells. The expression of A2A receptor mRNA increased in A498 epithelial cells exposed to CM and UPEC, while A1 and A2B receptor transcripts decreased or remained unchanged. Up-regulation of A2A receptors was confirmed at the protein level using Western blot analysis and immunocytochemistry. There was also an increase in A2A receptor mRNA in human bladder epithelial cells (T24 and RT4) and in mouse bladder uroepithelium in response to cytokines and UPEC. IL-6 secretion in UPEC-infected A498 cells was decreased by 38% when exposed to the A2A receptor agonist CGS 21680. CONCLUSION Our data showed a subtype-selective plasticity among adenosine receptors in urinary tract epithelial cells in response to UPEC-infection and cytokines. There was a consistent up-regulation of A2A receptors in kidney and bladder epithelial cells. Functionally, A2A receptor activation reduced UPEC-induced IL-6 secretion. These findings suggest that adenosine might be a previously unrecognized regulator of the mucosal response in urinary tract infection. [source] Heparin-binding epidermal growth factor-like growth factor functionally antagonizes interstitial cystitis antiproliferative factor via mitogen-activated protein kinase pathway activationBJU INTERNATIONAL, Issue 4 2009Jayoung Kim OBJECTIVE To delineate the mechanism underlying the potential functional relationship between interstitial cystitis antiproliferative factor (APF) and heparin-binding epidermal growth factor-like growth factor (HB-EGF), as APF has previously been shown to decrease the proliferation rate of normal bladder epithelial cells and the amount of HB-EGF produced by these cells. MATERIALS AND METHODS APF-responsive T24 transitional carcinoma bladder cells were treated with high-pressure liquid chromatography-purified native APF with or without HB-EGF to determine the involvement of signalling pathways and proliferation by Western blot analysis, p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (Erk)/MAPK assays, and 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS Cyclic stretch induced the secretion of HB-EGF from T24 cells overexpressing the HB-EGF precursor, resulting in enhanced proliferation. T24 cells treated with APF had increased p38MAPK activity and suppressed cell growth, events that were both reversed by treatment with a p38MAPK-selective inhibitor. Activation of Erk/MAPK by HB-EGF was inhibited by APF, and APF did not stimulate p38MAPK in the presence of soluble HB-EGF or when cells overexpressed constitutively secreted HB-EGF. Lastly, APF inhibitory effects on cell growth were attenuated by HB-EGF. CONCLUSIONS These results indicate that HB-EGF and APF are functionally antagonistic and signal through parallel MAPK signalling pathways in bladder cells. [source] |