Bloch Equations (bloch + equation)

Distribution by Scientific Domains


Selected Abstracts


Cine cardiac imaging using black-blood steady-state free precession (BB-SSFP) at 3T

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 1 2009
Tamer A. Basha MSE
Abstract Purpose To propose a new black-blood (BB) pulse sequence that provides BB cine cardiac images with high blood-myocardium contrast. The proposed technique is based on the conventional steady-state free precession (SSFP) sequence. Materials and Methods Numerical simulations of the Bloch equation were conducted to compare the resulting signal-to-noise ratio (SNR) to that of conventional BB imaging, including the effects of changing the imaging flip angle and heart rates. Simulation results were verified using a gel phantom experiment and five normal volunteers were scanned using the proposed technique. Results The new sequence showed higher SNR and contrast-to-noise ratio (CNR) (,100%) compared to the conventional BB imaging. Also, the borders of the left ventricle (LV) and right ventricle (RV) appear more distinguishable than the conventional SSFP. We were also able to cover about 80% of the cardiac cycle with short breath-hold time (,10 cardiac cycles) and with reasonable SNR and CNR. Conclusion Based on an SSFP conventional sequence, the new sequence provides BB cines that cover most of the cardiac cycle and with higher SNR and CNR than the conventional BB sequences. J. Magn. Reson. Imaging 2009;30:94,103. © 2009 Wiley-Liss, Inc. [source]


On the transient phase of balanced SSFP sequences

MAGNETIC RESONANCE IN MEDICINE, Issue 4 2003
Klaus Scheffler
Abstract The signal intensity of balanced steady-state free precession (SSFP) imaging is a function of the proton density, T1, T2, flip angle (,), and repetition time (TR). The steady-state signal intensity that is established after about 5*T1/TR can be described analytically. The transient phase or the approach of the echo amplitudes to the steady state is an exponential decay from the initial amplitude after the first excitation pulse to the steady-state signal. An analytical expression of the decay rate of this transient phase is presented that is based on a simple analysis derived from the Bloch equations. The decay rate is a weighted average of the T1 and T2 relaxation times, where the weighting is determined by the flip angle of the excitation pulses. Thus, balanced SSFP imaging during the transient phase can provide various contrasts depending on the flip angle and the number of excitation pulses applied before the acquisition of the central k -space line. In addition, transient imaging of hyperpolarized nuclei, such as 3He, 129Xe, or 13C, can be optimized according to their T1 and T2 relaxation times. Magn Reson Med 49:781,783, 2003. © 2003 Wiley-Liss, Inc. [source]


Trabecular bone volume fraction mapping by low-resolution MRI

MAGNETIC RESONANCE IN MEDICINE, Issue 1 2001
M.A. Fernández-Seara
Abstract Trabecular bone volume fraction (TBVF) is highly associated with the mechanical competence of trabecular bone. TBVF is ordinarily measured by histomorphometry from bone biopsies or, noninvasively, by means of high-resolution microcomputed tomography and, more recently, by micro-MRI. The latter methods require spatial resolution sufficient to resolve trabeculae, along with segmentation techniques that allow unambiguous assignment of the signal to bone or bone marrow. In this article it is shown that TBVF can be measured under low-resolution conditions by exploiting the attenuation of the MR signal resulting from fractional occupancy of the imaging voxel by bone and bone marrow, provided that a reference signal is available from a marrow volume devoid of trabeculation. The method requires accurate measurement of apparent proton density, which entails correction for various sources of error. Key among these are the spatial nonuniformity in the RF field amplitude and effects of the slice profile, which are determined by B1 field mapping and numerical integration of the Bloch equations, respectively. By contrast, errors from variations in bone marrow composition (hematopoietic vs. fatty) between trabecular and reference site are predicted to be small and usually negligible. The method was evaluated in phantoms and in vivo in the distal radius and found to be accurate to 1% in marrow volume fraction. Finally, in a group of 12 patients of varying skeletal status, TBVF in the calcaneus was found to strongly correlate with integral bone mineral density of the lumbar vertebrae (r2 = 0.83, p < 0.0001). The method may fail in large imaging objects such as the human trunk at high magnetic field where standing wave and RF penetration effects cause intensity variations that cannot be corrected. Magn Reson Med 46:103,113, 2001. © 2001 Wiley-Liss, Inc. [source]


Modeling dynamic cerebral blood volume changes during brain activation on the basis of the blood-nulled functional MRI signal

NMR IN BIOMEDICINE, Issue 7 2007
Changwei W. Wu
Abstract Recently, vascular space occupancy (VASO) based functional magnetic resonance imaging (fMRI) was proposed to detect dynamic cerebral blood volume (CBV) changes using the blood-nulled non-selective inversion recovery (NSIR) sequence. However, directly mapping the dynamic CBV change by the NSIR signal change is based on the assumption of slow water exchange (SWE) around the capillary regime without cerebral blood flow (CBF) effects. In the present study, a fast water exchange (FWE) model incorporating with flow effects was derived from the Bloch equations and implemented for the quantification of dynamic CBV changes using VASO-fMRI during brain activation. Simulated results showed that only subtle differences in CBV changes estimated by these two models were observed on the basis of previously published VASO results. The influence of related physiological and biophysical factors within typical ranges was evaluated in steady-state simulations. It was revealed that in the transient state the CBV curves could be delayed in comparison with measured NSIR curves owing to the imbalance between the inflowing and outflowing blood signals. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Quantitative ASL muscle perfusion imaging using a FAIR-TrueFISP technique at 3.0,T

NMR IN BIOMEDICINE, Issue 1 2006
Andreas Boss
Abstract The feasibility of muscle perfusion imaging with diagnostic image quality was demonstrated using the FAIR-TrueFISP arterial spin labeling technique on a clinical 3.0,T whole-body scanner. In eight healthy volunteers (24 to 42 years old), quantitative perfusion maps of the forearm musculature were acquired before and after intense exercise. All measurements were carried out in a 3.0,T whole-body MR unit in combination with an eight-channel head coil. Pulsed arterial spin labeling and data recording were performed with an adapted FAIR-TrueFISP technique and quantitative perfusion maps were calculated on a pixel-by-pixel basis by means of the extended Bloch equations. Perfusion images with an in-plane resolution of 1,mm showed no significant distortions or blurring. Perfusion,time curves could be recorded with a temporal resolution of 6.4,s. Maximum perfusion in the musculature was found ,2,min after exercise, reaching values of up to 220,mL/min per 100,g of tissue with good delineation between the active muscles and the musculature not involved in the exercise. In conclusion, the TrueFISP pulsed arterial spin labeling technique allows patient-friendly assessment of muscular perfusion in a clinical whole-body scanner. Copyright © 2006 John Wiley & Sons, Ltd. [source]