Blend System (blend + system)

Distribution by Scientific Domains

Kinds of Blend System

  • polymer blend system


  • Selected Abstracts


    Observation of a Charge Transfer State in Low-Bandgap Polymer/Fullerene Blend Systems by Photoluminescence and Electroluminescence Studies

    ADVANCED FUNCTIONAL MATERIALS, Issue 20 2009
    Yi Zhou
    Abstract The presence of charge transfer states generated by the interaction between the fullerene acceptor PCBM and two alternating copolymers of fluorene with donor,acceptor,donor comonomers are reported; the generation leads to modifications in the polymer bandgap and electronic structure. In one of polymer/fullerene blends, the driving force for photocurrent generation, i.e., the gap between the lowest unoccupied molecular orbitals of the donor and acceptor, is only 0.1,eV, but photocurrent is generated. It is shown that the presence of a charge transfer state is more important than the driving force. The charge transfer states are visible through new emission peaks in the photoluminescence spectra and through electroluminescence at a forward bias. The photoluminescence can be quenched under reverse bias, and can be directly correlated to the mechanism of photocurrent generation. The excited charge transfer state is easily dissociated into free charge carriers, and is an important intermediate state through which free charge carriers are generated. [source]


    Triplet Exciton and Polaron Dynamics in Phosphorescent Dye Blended Polymer Photovoltaic Devices

    ADVANCED FUNCTIONAL MATERIALS, Issue 17 2010
    Chang-Lyoul Lee
    Abstract The triplet exciton and polaron dynamics in phosphorescent dye (PtOEP) blended polymer (MEH-PPV) photovoltaic devices are investigated by quasi-steady-state photo-induced absorption (PIA) spectroscopy. According to the low-temperature PIA and photoluminescence (PL) results, the increase in strength of the triplet-triplet (T1 - Tn) absorption of MEH-PPV in the blend system originates from the triplet-triplet energy transfer from PtOEP to MEH-PPV. The PtOEP blended MEH-PPV/C60 bilayer photovoltaic device shows a roughly 30%,40% enhancement in photocurrent and power-conversion efficiency compared to the device without PtOEP. However, in contrast to the bilayer device results, the bulk heterojunction photovoltaic devices do not show a noticeable change in photocurrent and power-conversion efficiency in the presence of PtOEP. The PIA intensity, originating from the polaron state, is only slightly higher (within the experimental error), indicating that carrier generation in the bulk heterojunction is not enhanced in the presence of PtOEP. The rate and probability of the exciton dissociation between PtOEP and PCBM is much faster and higher than that of the triplet-triplet energy transfer between PtOEP and MEH-PPV. [source]


    Rheological, morphological, mechanical, and barrier properties of PP/EVOH blends

    ADVANCES IN POLYMER TECHNOLOGY, Issue 3 2001
    Jong Ho Yeo
    Using the biaxially oriented film process, polypropylene (PP)/ethylene-vinyl alcohol copolymer (EVOH) blends with an improved barrier property could be obtained by generating a laminar structure of the dispersed phase in the matrix phase. This laminar morphology, induced by biaxial orientation, was found to result in a significant increase in the oxygen barrier property of PP/EVOH (85/15) blends by about 10 times relative to the pure PP. In this study, compatibility in the PP/EVOH blend system was evaluated by investigating the influence of compatibilizer on the rheological, morphological, and mechanical properties of the blends. In addition, the effects of compatibilizer content, draw ratio, and draw temperature on the oxygen permeability and morphology of biaxially drawn blend films were also studied. It was revealed that an optimum amount of compatibilizer, maleic anhydride grafted PP, should be used to improve the barrier property of the PP/EVOH blends with a well-developed laminar structure. The draw ratio and draw temperature had a significant influence on the permeability of the blends. The blend films exhibited a more pronounced laminar structure when the blends were stretched biaxially under processing conditions of higher draw ratio and draw temperature, resulting in higher barrier properties. © 2001 John Wiley & Sons, Inc. Adv Polym Techn 20: 191,201, 2001 [source]


    Compatibility studies with blends based on poly(n -butyl methacrylate) and polyacrylonitrile

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2010
    Zhaogang Ge
    Abstract In this study, poly(n -butyl methacrylate) (PBMA) was prepared by a suspension polymerization process, and blending with polyacrylonitrile (PAN) in N,N -dimethyl acetamide to prepare PAN/PBMA blends in various proportions. Hansen's three dimensional solubility parameters of PAN and PBMA were calculated approximately through the contributions of the structural groups. The compatibility in these blend systems was studied with theoretical calculations as well as experimental measurements. Viscometric methods, Fourier transform infrared spectroscopy, dynamic mechanical analysis, scanning electron microscopy, and thermogravimetric analysis were used for this investigation. All the results showed that a partial compatibility existed in PAN/PBMA blend system, which may be due to the intermolecular interactions between the two polymers. And, the adsorption experiment results showed that the addition of PBMA contributed to the enhancing adsorptive properties of blend fibers, which lays the foundation for further studying PAN/PBMA blend fibers with adsorptive function. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


    The effect of ionic interaction on the miscibility and crystallization behaviors of poly(ethylene glycol)/poly(L -lactic acid) blends

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2008
    Wei-Chi Lai
    Abstract The effect of end groups (2NH2) of poly(ethylene glycol) (PEG) on the miscibility and crystallization behaviors of binary crystalline blends of PEG/poly(L -lactic acid) (PLLA) were investigated. The results of conductivity meter and dielectric analyzer (DEA) implied the existence of ions, which could be explained by the amine groups of PEG gaining the protons from the carboxylic acid groups of PLLA. The miscibility of PEG(2NH2)/PLLA blends was the best because of the ionic interaction as compared with PEG(2OH, 1OH-1CH3, and 2CH3)/PLLA blends. Since the ionic interaction formed only at the chain ends of PEG(2NH2) and PLLA, unlike hydrogen bonds forming at various sites along the chains in the other PEG/PLLA blend systems, the folding of PLLA blended with PEG(2NH2) was affected in a different manner. Thus the fold surface free energy played an important role on the crystallization rate of PLLA for the PEG(2NH2)/PLLA blend system. PLLA had the least fold surface free energy and the fast crystallization rate in the PEG(2NH2)/PLLA blend system, among all the PEG/PLLA systems studied. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


    Enhanced Stereocomplex Formation of Poly(L -lactic acid) and Poly(D -lactic acid) in the Presence of Stereoblock Poly(lactic acid)

    MACROMOLECULAR BIOSCIENCE, Issue 6 2007
    Kazuki Fukushima
    Abstract Stereoblock poly(lactic acid) (sb-PLA) is incorporated into a 1:1 polymer blend system of poly(L -lactic acid) (PLLA) and poly(D -lactic acid) (PDLA) that has a high molecular weight to study its addition effect on the stereocomplex (sc) formation of PLLA and PDLA. The ternary polymer blend films are first prepared by casting polymer solutions of sb-PLA, PLLA, and PDLA with different compositions. Upon increasing the content of sb-PLA in the blend films the sc crystallization is driven to a higher degree, while the formation of homo-chiral (hc) crystals is decreased. Lowering the molecular weight of the incorporated sb-PLA effectively increases the sc formation. Consequently, it is revealed that sb-PLA can work as a compatibilizer to improve the poor sc formation in the polymer blend of PLLA and PDLA. [source]


    Miscibility in Blends of Isotactic/Syndiotactic Polystyrenes at Melt or Quenched Amorphous Solid State

    MACROMOLECULAR MATERIALS & ENGINEERING, Issue 11 2006
    Shu Hsien Li
    Abstract Summary: Miscibility in amorphous phase and behavior in a crystalline phase of blends of two semicrystalline and isomeric polymers, isotactic polystyrene (iPS) and syndiotactic polystyrene (sPS), was probed. Optical and scanning electron microscopy results indicate no discernible heterogeneity in iPS/sPS blends in either melt state or rapidly quenched amorphous super-cooled state, while the Tg behavior of the quenched amorphous blends shows an intimately mixed state of two polymer chains. The crystal forms of the blends were further analyzed to provide additional evidence of miscibility in the amorphous domain. The sPS in the iPS/sPS blends upon melt crystallization was found to predominantly exist as the more stable , -form (rather than mixed , -form and , -form in neat sPS), which also suggests evidence of miscibility in the iPS/sPS blends. The melting behavior of semicrystalline sPS in the iPS/sPS mixtures was analyzed using the Flory-Huggins approach for estimation of interactions. By measuring the equilibrium melting point of the higher-melting sPS species in the sPS/iPS blends, a small negative value, for the interaction parameter (,,,,,0.11) was found. Further, by introducing a third polymer, poly(2,6-dimethyl- p -phenylene oxide) (PPO), a ternary iPS/sPS/PPO blend system was also proven miscible, which constituted a further test for stable phase miscibility in the iPS/sPS blend. General nature of miscibility in blends composed of two crystalline isomeric polymers is discussed. Issues in dealing with blends of polymers of the same chemical repeat unit but different tacticities were addressed. X-ray diffractograms for neat sPS and iPS/sPS blends, each having been isothermally crystallized at 245,°C for 4 h. [source]


    Ternary miscibility in blends of three polymers with balanced binary interactions

    POLYMER ENGINEERING & SCIENCE, Issue 3 2003
    E. M. Woo
    This study demonstrates and discusses ternary miscibility in a three-polymer blend system based on balanced binary interactions. A truly miscible ternary blend comprising poly(,-caprolactone) (PCL), poly(benzyl methacrylate) (PBzMA), and poly(vinyl methyl ether) (PVME), was discovered and reported. Miscibility with phase homogeneity (excluding the PCL crystalline domain) in a wide composition range has been demonstrated using criteria of thermal transition behavior, cloud point, and microscopy characterization. At ambient temperature, the three-polymer ternary system is completely miscible within the entire composition range (i.e., no immiscibility loop). However, at slightly elevated temperatures above the ambient. phase separation readily occurred in this originally miscible ternary blend. A quite low "lower critical solution temperature" (LCST) near 75°C was found for the ternary blend, which is much lower than any of those for the binary pairs. Balanced interactions with no offsetting ,, among the three binary pairs were a key factor leading to a ternary miscible system. [source]


    Influence of the processing conditions on a two-phase reactive blend system: EVA/PP thermoplastic vulcanizate

    POLYMER ENGINEERING & SCIENCE, Issue 11 2002
    Catherine Joubert
    The elaboration of a TPV based on copolymer of ethylene and vinyl acetate (EVA) and polypropylene (PP) as thermoplastic phase was investigated in a batch mixer. The crosslinking reaction is carried out through a transesterification reaction between ester groups of EVA and alcoxysilane groups of the crosslinker agent tetrapropoxyorthosilicate (TPOS). The main advantage of this crosslinking reaction is that it can be well controlled and suitable for different processing conditions. The aim of the present study is to get a better understanding of the dispersion mechanism and of the phase inversion of the EVA major phase during its dynamic vulcanization into the PP minor phase. It was proved that the initial viscosity ratio, , = ,pp/,EVA, between EVA and PP plays an important part in the morphology development of the reactive blend. The viscosity ratio must be close to the critical ratio expressed by Utracki's model of phase inversion mechanism. Furthermore, the influence of different processing parameters on the variation of the morphology and on the mechanical properties of the ultimate TPV was investigated. The main conclusion of this study is that the characteristic time of crosslinking must be of the same order than the time of mixing. Indeed, better mechanical properties are obtained when a progressive phase inversion occurred and when it is controlled by rheological aspects and transient morphology equilibrium of the two phases and not by the mechanical fragmentation of the crosslinked EVA. For example, in our experimental conditions (concerning the amounts of catalyst and crosslinker reagents), high shear rates can be avoided ( < 80 s,1) as the self-heating of the blend under shear considerably increases (,T , 50°C for = 225 s,1), leading to faster kinetics and consequently to a phase inversion controlled by the fragmentation of the crosslinked EVA phase. [source]


    Miscibility enhancement of supramolecular polymer blends through complementary multiple hydrogen bonding interactions

    POLYMER INTERNATIONAL, Issue 7 2010
    Shiao-Wei Kuo
    Abstract We have investigated the miscibility behavior and specific interactions of supramolecular poly[vinylbenzylthymine- co -(butyl methacrylate)] (T-PBMA) and poly[(2-vinyl-4,6-diamino-1,3,5-triazine)- co -styrene] (VDAT-PS) blends with respect to their vinylbenzylthymine (VBT) and 2-vinyl-4,6-diamino-1,3,5-triazine (VDAT) contents. Fourier transform infrared spectroscopy revealed that multiple hydrogen bonding interactions occurred exclusively between the VDAT and VBT units, which were stronger than adenine and thymine interactions. A miscibility window occurred in the VDAT-PS/T-PBMA blend system when the VBT and VDAT fractions in the copolymers were greater than 7 mol%, as predicted using the Painter,Coleman association model. Copyright © 2010 Society of Chemical Industry [source]


    Thermally crosslinked polymer blends of polyurethane and chlorobutyl elastomers (sulfur cure)

    POLYMER INTERNATIONAL, Issue 5 2001
    B Khatua
    Abstract Blends of polyurethane with chlorobutyl elastomer prepared by three different blending techniques have been studied in the entire composition range. The properties of the blends showed that the blending technique plays an important role in determining the blend properties. IR spectral analysis revealed that interchain crosslinking is possible in this blend system upon heat treatment. Thermal stability of blends prepared by preheating the preblend was increased and the degradation process was retarded. Extractability of the single phase, by solvent, was also limited significantly in the case of the preheated preblended sample, probably due to phase adhesion. © 2001 Society of Chemical Industry [source]


    Reactive compatibilization of nylon copolymer/EPDM blends: experimental aspects and their comparison with theory

    POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 5 2008
    Cibi Komalan
    Abstract In situ reactive compatibilization was first time applied to a low melting nylon (nylon 6 and 66 copolymer) and EPDM blend system. The effects of in situ compatibilization and concentration of compatibilizer on the morphology and mechanical properties of nylon/EPDM blends have been investigated. The influence of EPM-g-MA on the phase morphology was examined by the scanning electron microscopy (SEM) after preferential extraction of the minor phase. The SEM micrographs were quantitatively analyzed for domain size measurements. The compatibilizer concentrations used were 0, 1, 2.5, 5, and 10,wt%. The graft copolymer (nylon-g-EPM) formed at the interface showed relatively high emulsifying activity. A maximum phase size reduction was observed when 2.5,wt% of compatibilizer was added to the blend system. This was followed by a leveling-off at higher loadings indicating interfacial saturation. The conformation of the compatibilizer at the interface was deduced based on the area occupied by the compatibilizer at the blend interface. The experimental compatibilization results were compared with theoretical predictions of Noolandi and Hong. It was concluded that the molecular state of compatibilizer at interface changes with concentration. The in situ compatibilized blends showed considerable improvement in mechanical properties. Measurement of tensile properties shows increased elongation as well as enhanced modulus and strength up on compatibilization. At higher concentrations of compatibilizer, a leveling-off of the tensile properties was observed. A good correlation has been observed between the mechanical properties and morphological parameters. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Effect of solid state grinding on properties of PP/PET blends and their composites with carbon nanotubes

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2010
    Ozcan Koysuren
    Abstract In this study, it was aimed to improve electrical conductivity and mechanical properties of conductive polymer composites, composed of polypropylene (PP), poly(ethylene terephthalate) (PET), and carbon nanotubes (CNT). Grinding, a type of solid state processing technique, was applied to PP/PET and PP/PET/CNT systems to reduce average domain size of blend phases and to improve interfacial adhesion between these phases. Surface energy measurements showed that carbon nanotubes might be selectively localized at PET phase of immiscible blend systems. Grinding technique exhibited improvement in electrical conductivity and mechanical properties of PP/PET/CNT systems at low PET compositions. Ground composites molded below the melting temperature of PET exhibited higher tensile strength and modulus values than those prepared above the melting temperature of PET. According to SEM micrographs, micron-sized domain structures were obtained with ground composite systems in which PET was the minor phase. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


    Compatibility studies with blends based on poly(n -butyl methacrylate) and polyacrylonitrile

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2010
    Zhaogang Ge
    Abstract In this study, poly(n -butyl methacrylate) (PBMA) was prepared by a suspension polymerization process, and blending with polyacrylonitrile (PAN) in N,N -dimethyl acetamide to prepare PAN/PBMA blends in various proportions. Hansen's three dimensional solubility parameters of PAN and PBMA were calculated approximately through the contributions of the structural groups. The compatibility in these blend systems was studied with theoretical calculations as well as experimental measurements. Viscometric methods, Fourier transform infrared spectroscopy, dynamic mechanical analysis, scanning electron microscopy, and thermogravimetric analysis were used for this investigation. All the results showed that a partial compatibility existed in PAN/PBMA blend system, which may be due to the intermolecular interactions between the two polymers. And, the adsorption experiment results showed that the addition of PBMA contributed to the enhancing adsorptive properties of blend fibers, which lays the foundation for further studying PAN/PBMA blend fibers with adsorptive function. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


    The effect of ionic interaction on the miscibility and crystallization behaviors of poly(ethylene glycol)/poly(L -lactic acid) blends

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2008
    Wei-Chi Lai
    Abstract The effect of end groups (2NH2) of poly(ethylene glycol) (PEG) on the miscibility and crystallization behaviors of binary crystalline blends of PEG/poly(L -lactic acid) (PLLA) were investigated. The results of conductivity meter and dielectric analyzer (DEA) implied the existence of ions, which could be explained by the amine groups of PEG gaining the protons from the carboxylic acid groups of PLLA. The miscibility of PEG(2NH2)/PLLA blends was the best because of the ionic interaction as compared with PEG(2OH, 1OH-1CH3, and 2CH3)/PLLA blends. Since the ionic interaction formed only at the chain ends of PEG(2NH2) and PLLA, unlike hydrogen bonds forming at various sites along the chains in the other PEG/PLLA blend systems, the folding of PLLA blended with PEG(2NH2) was affected in a different manner. Thus the fold surface free energy played an important role on the crystallization rate of PLLA for the PEG(2NH2)/PLLA blend system. PLLA had the least fold surface free energy and the fast crystallization rate in the PEG(2NH2)/PLLA blend system, among all the PEG/PLLA systems studied. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


    Yttria,polystyrene,polypropylene composite for fine dyeable fibers

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2008
    Chengbing Yu
    Abstract Fine polypropylene fiber has many excellent properties, but it is difficult to dye because of the absence of dye sites in the molecular chain and high crystallinity. Fine polypropylene/hybrid polystyrene (yttria) fiber melt-spun from blends of polypropylene and a small amount of nanohybrid polystyrene with modified yttria incorporated was prepared to improve the dyeing properties. The dyeability, orientation, degree of crystallinity, phase morphology, and mechanical properties of pure polypropylene and the blend fibers were investigated. It was found that the crystallinity and morphology of these phases in the blend systems were different. With the existence of nanohybrid polystyrene, the fine modified polypropylene filaments had practical mechanical properties, the amorphous region of the polypropylene/hybrid polystyrene (yttria) fiber increased, and the modified polypropylene fiber dyed easily and had good fastness to soaping because of the complexation of the disperse dye and yttrium in the blend system. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


    Synthesis of bipolar charge transporting block copolymers and characterization for organic light-emitting diode

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 7 2010
    Kousuke Tsuchiya
    Abstract A series of hole and electron transporting random and block copolymers consisting of triphenylamine moiety as a hole transporting unit and oxadiazole moiety as an electron transporting unit have been prepared via a nitroxide mediated radical polymerization. Oxadiazole monomers with t -butyl or trifluoromethyl groups, 2 and 7, respectively, were used for copolymerization. Photoluminescent measurements of polymers revealed that the formation of the exciplex between triphenylamine and oxadiazole units tends to occur in the order of random copolymers, block copolymers, and polymer blends, implying phase-separated morphologies in block or blend systems. The polymers were applied for OLED devices, and we found that the morphology in the polymer layer critically affected device performance. The block copolymer comprising hole and electron transporting units with the composition of 14/86 showed the highest external quantum efficiency over 10%. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1461,1468, 2010 [source]


    Liquid-liquid equilibria of binary polymer blends: molecular thermodynamic approach

    MACROMOLECULAR SYMPOSIA, Issue 1 2003
    Bong Ho Chang
    Abstract We extended and simplified the modified double-lattice model to binary polymer blend systems. The model has two model parameters, C, and C,. Those are not adjustable parameters but universal functions. In comparison with Ryu et al.'s simulation data for symmetric polymer blend with various chain lengths (r1 = r2 = 8, 20, 50, 100), C, is determined. Our results show that C, is negligible for symmetric polymer blend systems. The proposed model describes very well phase behaviors of weakly interacting polymer blend systems. [source]


    A novel miniature mixing device for polymeric blends and nanocomposites

    POLYMER ENGINEERING & SCIENCE, Issue 11 2009
    Martin Sentmanat
    A new miniature mixer has been developed to monitor and optimize the preparation protocol of various polymeric compounds and blend systems. The effect of mixing time and other basic processing parameters on the shear and extensional rheological properties of said compounds and blends is examined to understand the effect of undermixed and/or overmixed conditions on the rheological properties and thus the quality of the final products. Results from the new miniature mixer are compared with the results from other conventional mixing techniques to assess the scalability of the new mixing protocol. Two examples are used, those of polymer blending and nanocomposite formation. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers. [source]


    Thermodynamic characterization of hybrid polymer blend systems

    POLYMER ENGINEERING & SCIENCE, Issue 6 2009
    Amos Ophir
    A thermodynamic model was used to predict the morphology of hybrid multicomponent polymer blend systems. Two systems were studied, both including two noncompatible polymers, a third compatibilizer polymer and layered, organo-treated clays. The polar and nonpolar contributions of the surface energies of the components of the systems were calculated using measurements of the contact angles. The morphology of the multicomponent systems and the relative position of the organo-clays within them, were predicted by calculating the interaction energies between the different components of the system and evaluating these values according to the Vaia and Giannelis thermodynamic model for polymer melt intercalation in organically modified layered silicates. The experimental results show good correlation with the prediction that the organo-clays will have higher affinity to the compatibilizer polymer component situated at the interface between the two noncompatible blend components. In addition, the presence of the organo-clays in this interface was found to have a significant additional compatibilizing effect between the two polymer phases. The results presented in this work support the idea that hybrid formation via polymer melt intercalation depends mostly on energetic factors that can be determined from surface energies of polymers and organo-modified layered silicates, also in the case of multiphase polymer system. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers [source]


    Hydrogen-bonding interaction between poly(,-caprolactone) and low-molecular-weight amino compounds

    POLYMER INTERNATIONAL, Issue 4 2001
    Takumi Watanabe
    Abstract The specific interactions between several low-molecular-weight diamino compounds and poly(,-caprolactone) (PCL) have been investigated by FT-IR. It was found that PCL and 3,3,-diaminodiphenylmethane (3,3,-DADPM) interact through strong intermolecular hydrogen bonds in the blend. Thermal and mechanical properties of PCL/3,3,-DADPM blends were investigated by DSC and tensile measurements, respectively. The glass transition temperature of the blend increases while both the melting point and the elongation-at-break of the blend decrease with the increase of 3,3,-DADPM content. Besides 3,3,-DADPM, several other low-molecular-weight compounds containing two amino groups, such as o -phenylenediamine or 1,6-diaminohexane, were also added into PCL and the corresponding blend systems were investigated by FT-IR and DSC. The effect of the chemical structure of the additives on the properties of PCL is discussed. © 2001 Society of Chemical Industry [source]