| |||
Biotransformation Pathway (biotransformation + pathway)
Selected AbstractsIn vitro metabolism of , -lapachone (ARQ 501) in mammalian hepatocytes and cultured human cellsRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 1 2009Xiu-Sheng Miao ARQ 501 (3,4-dihydro-2,2-dimethyl-2H -naphthol[1,2-b]pyran-5,6-dione, , -lapachone) is an anticancer agent, currently in multiple phase II clinical trials as monotherapy and in combination with other cytotoxic drugs. This study focuses on in vitro metabolism in cryopreserved hepatocytes from mice, rats, dogs and humans using [14C]-labeled ARQ 501. Metabolite profiles were characterized using liquid chromatography/mass spectrometry combined with an accurate radioactivity counter. Ion trap mass spectrometry was employed for further structural elucidation. A total of twelve metabolites were detected in the mammalian hepatocytes studied; all of which but one were generated from phase II conjugation reactions. Ten of the observed metabolites were produced by conjugations occurring at the reduced ortho -quinone carbonyl groups of ARQ 501. The metabolite profiles revealed that glucuronidation was the major biotransformation pathway in mouse and human hepatocytes. Monosulfation was the major pathway in dog, while, in rat, it appears glucuronidation and sulfation pathways contributed equally. Three major metabolites were found in rats: monoglucuronide M1, monosulfate M6, and glucuronide-sulfate M9. Two types of diconjugation metabolites were formed by attachment of the second glycone to an adjacent hydroxyl or to an existing glycone. Of the diconjugation metabolites, glucosylsulfate M10, diglucuronide M5, and glucuronide-glucoside M11 represent rarely observed phase II metabolites in mammals. The only unconjugated metabolite was generated through hydrolysis and was observed in rat, dog and human hepatocytes. ARQ 501 appeared less stable in human hepatocytes than in those of other species. To further elucidate the metabolism of ARQ 501 in extrahepatic sites, its metabolism in human kidney, lung and intestine cells was also studied, and only monoglucuronide M1 was observed in all the cell types examined. Copyright © 2008 John Wiley & Sons, Ltd. [source] Stereospecificity and stereoselectivity of flobufen metabolic profile in male rats in vitro and in vivo: Phase I of biotransformationCHIRALITY, Issue 10 2001Vladimír Wsól Abstract Flobufen (F) is the original nonsteroidal antiinflammatory drug (NSAID) containing two enantiomers. The aim of this investigation was to elucidate the biotransformation pathway of F at chiral level in phase I of biotransformation. Stereoselectivity and stereospecificity of the respective enzymes were studied in male rats in vitro (microsomal and cytosolic fractions, hepatocytes suspension) and in vivo. The rac -F, (+)-R-F and (,)-S-F were used as substrates. Amounts of F enantiomers, 4-dihydroflobufen diastereoisomers (DHF) and other metabolites (M-17203, UM) were determined with a chiral HPLC method in two chromatographic runs on R,R-ULMO and allyl-terguride bonded columns. Stereoselective biotransformation of the two enantiomers of F was observed at all tested levels and significant bidirectional chiral inversion of enantiomers of F was observed in hepatocytes. Mean enantiomeric ratios of F concentrations (S-/R-), after rac -F incubations, ranging from 1.09 in cytosolic fraction to 18.23 in hepatocytes. Stereospecificity of the respective F reductases was also observed. (2R;4S)-DHF and (2S;4S)-DHF are the principal metabolites of F in microsomes and hepatocytes. Neither DHF diastereoisomers nor M-17203 were found in cytosolic fraction. Only the nonchiral metabolite, M-17203, was found in all urine and feces samples after oral administration of F. Chirality 13:754,759, 2001. © 2001 Wiley-Liss, Inc. [source] Biotransformation of flobufen enantiomers in ruminant hepatocytes and subcellular fractionsCHIRALITY, Issue 10 2001Lenka Skálová Abstract Flobufen (F), a new antiinflammatory drug, has one chiral and one prochiral center in its structure. Reduction of rac - F, the principal biotransformation pathway, leads to the formation of four diastereoisomers of 4-dihydroflobufen (DHF). F was chosen as a model substrate for interspecies comparison of activity, stereospecificity, and stereoselectivity of biotransformation enzymes in fallow bucks, red deer stags, and roe bucks in vitro. Formation of F metabolites was examined in hepatocyte suspension and in subcellular fractions of liver homogenate. (+)-R -F, (,)-S -F and rac - F were used as substrates. After incubation of substrates, the amounts and ratios of DHF diastereoisomers and F enantiomers were assessed by HPLC, with (R,R)-ULMO and terguride-bonded columns. Considerable interspecies differences in stereoselectivity and stereospecificity of F reductases were found at the cellular and subcellular levels, although these ruminants are closely related. Chiral inversion of F enantiomers to their antipodes was detected in vitro in all ruminants tested, but individual species also differed in the direction and rate of this inversion. Chirality 13:760,764, 2001. © 2001 Wiley-Liss, Inc. [source] New insights into the biotransformation and pharmacokinetics of oxaliplatinJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 11 2009Elin Jerremalm Abstract Oxaliplatin is used primarily in the treatment of metastatic colorectal cancer. In this minireview, we discuss potentially important biotransformation pathways in light of its short elimination half-life in vivo. We also highlight new information achieved using a selective analytical technique to measure intact oxaliplatin in pharmacokinetic studies (comprising intravenous, intraperitoneal, and intrahepatic administration) and compare to results obtained by measurements of total platinum. The use of selective analytical techniques is strongly recommended giving kinetic parameters of the parent compound and not only to a complex mixture of platinum containing endogenous compounds. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:3879,3885, 2009 [source] Analytical strategies for identifying drug metabolitesMASS SPECTROMETRY REVIEWS, Issue 3 2007Chandra Prakash Abstract With the dramatic increase in the number of new chemical entities (NCEs) arising from combinatorial chemistry and modern high-throughput bioassays, novel bioanalytical techniques are required for the rapid determination of the metabolic stability and metabolites of these NCEs. Knowledge of the metabolic site(s) of the NCEs in early drug discovery is essential for selecting compounds with favorable pharmacokinetic credentials and aiding medicinal chemists in modifying metabolic "soft spots". In development, elucidation of biotransformation pathways of a drug candidate by identifying its circulatory and excretory metabolites is vitally important to understand its physiological effects. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) have played an invaluable role in the structural characterization and quantification of drug metabolites. Indeed, liquid chromatography (LC) coupled with atmospheric pressure ionization (API) MS has now become the most powerful tool for the rapid detection, structure elucidation, and quantification of drug-derived material within various biological fluids. Often, however, MS alone is insufficient to identify the exact position of oxidation, to differentiate isomers, or to provide the precise structure of unusual and/or unstable metabolites. In addition, an excess of endogenous material in biological samples often suppress the ionization of drug-related material complicating metabolite identification by MS. In these cases, multiple analytical and wet chemistry techniques, such as LC-NMR, enzymatic hydrolysis, chemical derivatization, and hydrogen/deuterium-exchange (H/D-exchange) combined with MS are used to characterize the novel and isomeric metabolites of drug candidates. This review describes sample preparation and introduction strategies to minimize ion suppression by biological matrices for metabolite identification studies, the application of various LC-tandem MS (LC-MS/MS) techniques for the rapid quantification and identification of drug metabolites, and future trends in this field. © 2007 Wiley Periodicals, Inc., Mass Spec Rev [source] Effect of sulforaphane on glutathione-adduct formation and on glutathione_S_transferase-dependent detoxification of acrylamide in Caco-2 cellsMOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 12 2009Rita Pernice Abstract The toxicity of dietary acrylamide (AA) depends on its biotransformation pathways, in which phase I cytochrome P-450 enzymes transform AA into glycidamide. The phase II enzyme glutathione_S_transferase (GST) catalyses the conjugation of AA with glutathione (GSH). GST induction by phytochemicals like sulforaphane (SFN) plays a role in chemoprevention. Here, the effect of SFN on the detoxification of AA through GSH conjugation was studied in Caco-2 cells. GSH adducts with AA and SFN were synthesized, identified by NMR and quantified by LC-MS/MS. Caco-2 cells were treated with either 2.5,mM AA, 10,,M SFN or the combination of both for 24,h. Concentrations of GSH conjugates (GSH-AA, GSH-SFN, SFN-GSH-AA), AA and SFN were analysed by LC-MS/MS. GSH contents and GST activity were determined photometrically. GST activity was increased after treatment of the cells with SFN (38±6%, p,0.05) or AA (25±4%, p,0.05). GSH concentrations decreased after all treatments. Quantitative data of GSH adduct formation showed that the reaction between GSH and SFN is favoured over that between GSH and AA. The data suggest that SFN might impair the GSH-dependent detoxification of AA by SFN-GSH adduct formation and, thus, lower the GSH concentrations available for its reaction with AA. [source] |