Biotic Processes (biotic + process)

Distribution by Scientific Domains


Selected Abstracts


Acer negundo invasion along a successional gradient: early direct facilitation by native pioneers and late indirect facilitation by conspecifics

NEW PHYTOLOGIST, Issue 3 2010
Patrick Saccone
Summary ,Here, we analysed the role of direct and indirect plant interactions in the invasion process of Acer negundo along a natural successional gradient in the Middle Rhone floodplain (France). We addressed two questions: What are the responses of the invasive Acer seedlings to native communities' effects along the successional gradient? What are the effects of the invasive Acer adult trees on the native communities? ,In the three communities (Salix, Acer and Fraxinus stands) we transplanted juveniles of the invasive and juveniles of the natives within the forest and in experimental gaps, and with and without the herb layer. We also quantified changes in understory functional composition, light, nitrogen and moisture among treatments. ,Acer seedlings were directly facilitated for survival in the Salix and Acer communities and indirectly facilitated for growth by adult Acer through the reduction of the abundance of highly competitive herbaceous competitors. ,We conclude that direct facilitation by the tree canopy of the native pioneer Salix is very likely the main biotic process that induced colonization of the invasive Acer in the floodplain and that indirect facilitation by adult conspecifics contributed to population establishment. [source]


Measures, perceptions and scaling patterns of aggregated species distributions

ECOGRAPHY, Issue 1 2010
Cang Hui
Non-random (aggregated) species distributions arise from habitat heterogeneity and nonlinear biotic processes. A comprehensive understanding of the concept of aggregation, as well as its measurement, is pivotal to our understanding of species distributions and macroecological patterns. Here, using an individual-based model, we analyzed opinions on the concept of aggregation from the public and experts (trained ecologists), in addition to those calculated from a variety of aggregation indices. Three forms of scaling patterns (logarithmic, power-law and lognormal) and four groups of scaling trajectories emerged. The experts showed no significant difference from the public, although with a much lower deviation. The public opinion was partially influenced by the abundance of individuals in the spatial map, which was not found in the experts. With the increase of resolution (decrease of grain), aggregation indices showed a general trend from significantly different to significantly similar to the expert opinion. The over-dispersion index (i.e. the clumping parameter k in the negative binomial distribution) performed, at certain scales, as the closest index to the expert opinion. Examining performance of aggregation measures from different groups of scaling patterns was proposed as a practical way of analyzing spatial structures. The categorization of the scaling patterns of aggregation measures, as well as their over- and in-sensitivity towards spatial structures, thus not only provides a potential solution to the modifiable areal unit problem, but also unveils the interrelationship among the concept, measures and perceptions of aggregated species distributions. [source]


Possible role of reactive chlorine in microbial antagonism and organic matter chlorination in terrestrial environments

ENVIRONMENTAL MICROBIOLOGY, Issue 6 2009
Per Bengtson
Summary Several studies have demonstrated that extensive formation of organically bound chlorine occurs both in soil and in decaying plant material. Previous studies suggest that enzymatic formation of reactive chlorine outside cells is a major source. However, the ecological role of microbial-induced extracellular chlorination processes remains unclear. In the present paper, we assess whether or not the literature supports the hypothesis that extracellular chlorination is involved in direct antagonism against competitors for the same resources. Our review shows that it is by no means rare that biotic processes create conditions that render biocidal concentrations of reactive chlorine compounds, which suggest that extracellular production of reactive chlorine may have an important role in antagonistic microbial interactions. To test the validity, we searched the UniprotPK database for microorganisms that are known to produce haloperoxidases. It appeared that many of the identified haloperoxidases from terrestrial environments are originating from organisms that are associated with living plants or decomposing plant material. The results of the in silico screening were supported by various field and laboratory studies on natural chlorination. Hence, the ability to produce reactive chlorine seems to be especially common in environments that are known for antibiotic-mediated competition for resources (interference competition). Yet, the ability to produce haloperoxidases is also recorded, for example, for plant endosymbionts and parasites, and there is little or no empirical evidence that suggests that these organisms are antagonistic. [source]


The impact of storm events on solute exports from a glaciated forested watershed in western New York, USA

HYDROLOGICAL PROCESSES, Issue 16 2006
S. P. Inamdar
Abstract This study analysed the importance of precipitation events from May 2003 to April 2004 on surface water chemistry and solute export from a 696 ha glaciated forested watershed in western New York State, USA. The specific objectives of the study were to determine: (a) the temporal patterns of solutes within individual storm events; (b) the impact of precipitation events on seasonal and annual export budgets; and (c) how solute concentrations and loads varied for precipitation events among seasons as functions of storm intensity and antecedent moisture conditions. Analysis of solute trajectories showed that NH4+, total Al and dissolved organic nitrogen (DON) peaked on the hydrograph rising limb, whereas dissolved organic carbon (DOC) concentrations peaked following the discharge peak. Sulphate and base-cations displayed a dilution pattern with a minimum around peak discharge. End-member mixing analysis showed that throughfall contributions were highest on the rising limb, whereas valley-bottom riparian waters peaked following the discharge peak. The trajectories of NO3, concentrations varied with season, indicating the influence of biotic processes on the generation, and hence flux, of this solute. Storm events had the greatest impact on the annual budgets for NH4+, K+, total dissolved Al, DON and DOC. Storm events during summer had the greatest impact on seasonal solute budgets. Summer events had the highest hourly discharges and high concentrations of solutes. However, NO3, and DOC exports during a spring snowmelt event were considerably more than those observed for large events during other periods of the year. Comparisons among storms showed that season, precipitation amount, and antecedent moisture conditions affected solute concentrations and loads. Concentrations of solutes were elevated for storms that occurred after dry antecedent conditions. Seven of the largest storms accounted for only 15% of the annual discharge, but were responsible for 34%, 19%, 64%, 13%, 39% and 24% of the annual exports of NH4+, K+, Al, NO3,, DON and DOC respectively. These results suggest that the intense and infrequent storms predicted for future climate-change scenarios will likely increase the exports of solutes like DOC, DON, NH4+, Al and K+ from watersheds. Copyright © 2006 John Wiley & Sons, Ltd. [source]