| |||
Biotic Index (biotic + index)
Selected AbstractsLouisiana waterthrushes (Seiurus motacilla) and habitat assessments as cost-effective indicators of instream biotic integrityFRESHWATER BIOLOGY, Issue 10 2006B. J. MATTSSON Summary 1. Benthic stream animals, in particular macroinvertebrates, are good indicators of water quality, but sampling can be laborious to obtain accurate indices of biotic integrity. Thus, tools for bioassessment that include measurements other than macroinvertebrates would be valuable additions to volunteer monitoring protocols. 2. We evaluated the usefulness of a stream-dependent songbird, the Louisiana waterthrush (waterthrush, Seiurus motacilla) and the Environmental Protection Agency Visual Habitat Assessment (EPA VHA) as indicators of the macrobenthos community in headwater streams of the Georgia Piedmont, U.S.A. We sampled macrobenthos, surveyed waterthrushes and measured habitat characteristics along 39 headwater reaches across 17 catchments ranging from forested to heavily urbanised or grazed by cattle. 3. Of the indicators considered, waterthrush occupancy was best for predicting relative abundances of macrobenthic taxa, while the EPA VHA was best for predicting Ephemeroptera,Plecoptera,Trichoptera (EPT) richness. Individual components of EPA VHA scores were much less useful as indicators of EPT richness and % EPT when compared with the total score. Waterthrushes were found along streams with higher % EPT, a lower Family Biotic Index (FBI) values and greater macrobenthos biomass. 4. While macroinvertebrates remain one of the most direct indicators of stream water quality, stream bird surveys and reach-scale habitat assessments can serve as cost-effective indicators of benthic macroinvertebrate communities. Using stream-dependent birds as an early warning signal for degradation of stream biotic integrity could improve the efficacy of catchment monitoring programmes in detecting and identifying perturbations within the catchment. [source] Stream Condition in Piedmont Streams with Restored Riparian Buffers in the Chesapeake Bay Watershed,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2010Leslie L. Orzetti Orzetti, Leslie L., R. Christian Jones, and Robert F. Murphy, 2010. Stream Condition in Piedmont Streams with Restored Riparian Buffers in the Chesapeake Bay Watershed. Journal of the American Water Resources Association (JAWRA) 46(3):473-485. DOI: 10.1111/j.1752-1688.2009.00414.x Abstract:, This study tested the efficacy of restored forest riparian buffers along streams in the Chesapeake Bay watershed by examining habitat, selected water quality variables, and benthic macroinvertebrate community metrics in 30 streams with buffers ranging from zero to greater than 50 years of age. To assess water quality we measured in situ parameters (temperature, dissolved oxygen, and conductivity) and laboratory-analyzed grab samples (soluble reactive phosphorus, total phosphorus, nitrate, ammonium, and total suspended solids). Habitat conditions were scored using the Environmental Protection Agency Rapid Bioassessment Protocols for high gradient streams. Benthic macroinvertebrates were quantified using pooled riffle/run kick samples. Results showed that habitat, water quality, and benthic macroinvertebrate metrics generally improved with age of restored buffer. Habitat scores appeared to stabilize between 10 and 15 years of age and were driven mostly by epifaunal substrate availability, sinuosity, embeddedness, and velocity depth regime. Benthic invertebrate taxa richness, percent Ephemeroptera, Plecoptera, Trichoptera minus hydropsychids (%EPT minus H), % Ephemeroptera, and the Family Biotic Index were among the metrics which improved with age of buffer zone. Results are consistent with the hypothesis that forest riparian buffers enhance instream habitat, water quality, and resulting benthic macroinvertebrate communities with noticeable improvements occurring within 5-10 years postrestoration, leading to conditions approaching those of long established buffers within 10-15 years of restoration. [source] The Mediterranean intercalibration exercise on soft-bottom benthic invertebrates with special emphasis on the Italian situationMARINE ECOLOGY, Issue 4 2009Anna Occhipinti Ambrogi Abstract The intercalibration exercise is an important step in the building process of the surface water ecological quality assessment, which is required by the Water Framework Directive (WFD). Its aim is to apply the water quality classification in a uniform manner to all the Member States belonging to the same eco-region. Cyprus, France, Greece, Italy, Slovenia and Spain participated in the soft-bottom benthic invertebrate subgroup for the Mediterranean coastal region. The methodologies proposed by Member States were applied and tested; the results were compared and harmonized to establish agreed and comparable boundaries for the benthic invertebrate ecological status classes. The national methods used in the intercalibration process were: for Cyprus and Greece, the Bentix Index; for Slovenia, a combination of AZTI Marine Biotic Index (AMBI), richness and diversity with the use of factor and discriminant analysis (Multimetric AMBI); for Spain, a new index, named MEDOCC, which is an adaptation of the AMBI index to the Western Mediterranean area. Italy and France tested different methods, none of which have been officially adopted. Final class boundary values for the different official classification systems were obtained and compared. Besides describing methods and results obtained by the different countries, the Italian situation is examined in more detail. All the above methods have been applied to Italian data, but the results were not conclusive. Major causes for concern are related to insufficient sites and data, to the lack of real non-impacted reference sites, and to the difficulties in validating the ecological status classification in sites not showing a pollution gradient. [source] INFLUENCES OF WATERSHED URBANIZATION AND INSTREAM HABITAT ON MACROINVERTEBRATES IN COLD WATER STREAMS,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2003Lizhu Wang ABSTRACT: We analyzed data from riffle and snag habitats for 39 small cold water streams with different levels of watershed urbanization in Wisconsin and Minnesota to evaluate the influences of urban land use and instream habitat on macroinvertebrate communities. Multivariate analysis indicated that stream temperature and amount of urban land use in the watersheds were the most influential factors determining macroinvertebrate assemblages. The amount of watershed urbanization was nonlinearly and negatively correlated with percentages of Ephemeroptera-Plecoptera-Trichoptera (EPT) abundance, EPT taxa, filterers, and scrapers and positively correlated with Hilsenhoff biotic index. High quality macroinvertebrate index values were possible if effective imperviousness was less than 7 percent of the watershed area. Beyond this level of imperviousness, index values tended to be consistently poor. Land uses in the riparian area were equal or more influential relative to land use elsewhere in the watershed, although riparian area consisted of only a small portion of the entire watershed area. Our study implies that it is extremely important to restrict watershed impervious land use and protect stream riparian areas for reducing human degradation on stream quality in low level urbanizing watersheds. Stream temperature may be one of the major factors through which human activities degrade cold-water streams, and management efforts that can maintain a natural thermal regime will help preserve stream quality. [source] Interaction between macroinvertebrates, discharge and physical habitat in upland riversAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue S1 2010Michael J. Dunbar Abstract 1.There is a need to relate changing river flows to ecological response, particularly using methods which do not require extensive new data for water bodies without historical data. This paper describes how local-scale habitat features and changing discharge appear to influence a macroinvertebrate-based biotic index. 2.The study used 87 time-series of river biomonitoring data from upland, wadeable streams with quasi-natural flow regimes across England and Wales. Twenty-seven of the sites were matched to a nearby flow gauging station, and historical, natural flows using a generalized rainfall-runoff model were synthesized for 60 sites. All sites were matched to a River Habitat Survey (RHS) within 1,km. 3.The data were analysed using multilevel linear regression, combining sample- and site-level characteristics as predictors. Common responses were assessed across sites, using the biotic index LIFE (Lotic Invertebrate index for Flow Evaluation), an average of abundance-weighted Flow Groups which indicate the relative preference among taxa for higher velocities with gravel/cobble substrates or slow velocities with finer substrates. The aim was to understand the influence of physical habitat on macroinvertebrate response to antecedent high and low flow magnitude. 4.There was a positive relationship between LIFE score calculated from spring and autumn samples and antecedent high (Q10) and low flows (Q95). The relationship between summer Q10 and autumn LIFE score was steeper than the relationship between winter Q10 and spring LIFE score. Bed and bank resectioning reduced overall LIFE and increased the steepness of the response of LIFE to low (Q95) flow. 5.The models derived may be used to guide environmental flow allocations and to quantify the relative influence of flow and physical habitat change on macroinvertebrate responses. The interaction between resectioning and low flow has particular implications for the conservation of macroinvertebrate taxa with requirements for faster flowing water. Copyright © 2010 John Wiley & Sons, Ltd. [source] A new index of habitat alteration and a comparison of approaches to predict stream habitat conditionsFRESHWATER BIOLOGY, Issue 10 2007BRIAN FRAPPIER Summary 1. Stream habitat quality assessment complements biological assessment by providing a mechanism for ruling out habitat degradation as a potential stressor and provides reference targets for the physical aspects of stream restoration projects. This study analysed five approaches for predicting habitat conditions based on discriminant function, linear regressions, ordination and nearest neighbour analyses. 2. Quantitative physical and chemical habitat and riparian conditions in minimally-impacted streams in New Hampshire were estimated using United States Environmental Protection Agency's Environmental Monitoring and Assessment Program protocols. Catchment-scale descriptors were used to predict segment-scale stream channel and riparian habitat, and the accuracy and precision of the different modelling approaches were compared. 3. A new assessment index comparing and summarizing the degree of correspondence between predicted and observed habitat based on Euclidean distance between the standardized habitat factors is described. Higher index scores (i.e. greater Euclidean distance) would suggest a greater deviation in habitat between observed conditions and expected reference conditions. As in most biotic indices, the range in index scores in reference sites would constitute a situation equivalent to reference conditions. This new index avoids the erroneous prediction of multiple, mutually exclusive habitat conditions that have confounded previous habitat assessment approaches. 4. Separate linear regression models for each habitat descriptor yielded the most accurate and precise prediction of reference conditions, with a coefficient of variation (CV) between predictions and observations for all reference sites of 0.269. However, for a unified implementation in regions where a classification-based approach has already been taken for biological assessment, a discriminant analysis approach, that predicted membership in biotic communities and compared the mean habitat features in the biotic communities with the observed habitat features, was similar in prediction accuracy and precision (CV = 0.293). 5. The best model had an error of 27% of the mean index value for the reference sites, indicating substantial room for improvement. Additional catchment characteristics not readily available for this analysis, such as average rainfall or winter snow-pack, surficial geological characteristics or past land-use history, may improve the precision of the predicted habitat features in the reference streams. Land-use history in New Hampshire and regional environmental impacts have greatly impacted stream habitat conditions even in streams considered minimally-impacted today; thus as regional environmental impacts change and riparian forests mature, reference habitat conditions should be re-evaluated. [source] Effects of stream restoration and wastewater treatment plant effluent on fish communities in urban streamsFRESHWATER BIOLOGY, Issue 10 2006ROBERT M. NORTHINGTON Summary 1. Fish community characteristics, resource availability and resource use were assessed in three headwater urban streams in Piedmont North Carolina, U.S.A. Three site types were examined on each stream; two urban (restored and unrestored) and a forested site downstream of urbanisation, which was impacted by effluent from a wastewater treatment plant (WWTP). Stream basal resources, aquatic macroinvertebrates, terrestrial macroinvertebrates and fish were collected at each site. 2. The WWTPs affected isotope signatures in the biota. Basal resource, aquatic macroinvertebrate and fish ,15N showed significant enrichments in the downstream sites, although ,13C signatures were not greatly influenced by the WWTP. Fish were clearly deriving a significant part of their nutrition from sewage effluent-derived sources. There was a trend towards lower richness and abundance of fish at sewage-influenced sites compared with urban restored sites, although the difference was not significant. 3. Restored stream sites had significantly higher fish richness and a trend towards greater abundance compared with unrestored sites. Although significant differences did not exist between urban restored and unrestored areas for aquatic and terrestrial macroinvertebrate abundances and biotic indices of stream health, there appeared to be a trend towards improvements in restored sites for these parameters. Additional surveys of these sites on a regular basis, along with maintenance of restored features are vital to understanding and maximising restoration effectiveness. 4. A pattern of enriched ,13C in fish in restored and unrestored streams in conjunction with enriched ,13C of terrestrial invertebrates at these sites suggests that these terrestrial subsidies are important to the fish, a conclusion also supported by isotope cross plots. Furthermore, enriched ,13C observed for terrestrial invertebrates is consistent with some utilisation of the invasive C4 plants that occur in the urban riparian areas. [source] |