Biotic

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Biotic

  • different biotic
  • other biotic
  • various biotic

  • Terms modified by Biotic

  • biotic assemblage
  • biotic community
  • biotic component
  • biotic diversity
  • biotic environment
  • biotic factor
  • biotic homogenization
  • biotic index
  • biotic integrity
  • biotic interaction
  • biotic process
  • biotic resistance
  • biotic response
  • biotic stress

  • Selected Abstracts


    The profound influence of the Late Pliocene Panamanian uplift on the exchange, diversification, and distribution of New World birds

    ECOGRAPHY, Issue 2 2010
    Brian Tilston Smith
    Separated throughout most of the Cenozoic era, North and South America were joined during the mid-Pliocene when the uplift of Panama formed a land bridge between these two continents. The fossil record indicates that this connection allowed an unprecedented degree of inter-continental exchange to occur between unique, previously isolated biotic assemblages, a phenomenon now recognized as the "Great American Biotic Interchange". However, a relatively poor avian fossil record has prevented our understanding the role of the land bridge in shaping New World avian communities. To address the question of avian participation in the GABI, we compiled 64 avian phylogenetic studies and applied a relaxed molecular clock to estimate the timing of trans-isthmus diversification events. Here, we show that a significant pulse of avian interchange occurred in concert with the isthmus uplift. The avian exchange was temporally consistent with the well understood mammalian interchange, despite the presumed greater vagility of birds. Birds inhabiting a variety of habitats and elevational zones responded to the newly available corridor. Within the tropics, exchange was equal in both directions although between extratropical and tropical regions it was not. Avian lineages with Nearctic origins have repeatedly invaded the tropics and radiated throughout South America; whereas, lineages with South American tropical origins remain largely restricted to the confines of the Neotropical region. This previously unrecognized pattern of asymmetric niche conservatism may represent an important and underappreciated contributor to the latitude diversity gradient. [source]


    Effect of H2 and Redox Condition on Biotic and Abiotic MTBE Transformation

    GROUND WATER MONITORING & REMEDIATION, Issue 4 2006
    P.M. Bradley
    Laboratory studies conducted with surface water sediment from a methyl tert -butyl ether (MTBE)-contaminated site in South Carolina demonstrated that, under methanogenic conditions, [U- 14C] MTBE was transformed to 14C tert -butyl alcohol (TBA) with no measurable production of 14CO2. Production of TBA was not attributed to the activity of methanogenic microorganisms, however, because comparable transformation of [U- 14C] MTBE to 14C-TBA also was observed in heat-sterilized controls with dissolved H2 concentrations > 5 nM. The results suggest that the transformation of MTBE to TBA may be an abiotic process that is driven by biologically produced H2 under in situ conditions. In contrast, mineralization of [U- 14C] MTBE to 14CO2 was completely inhibited by heat sterilization and only observed in treatments characterized by dissolved H2 concentrations < 2 nM. These results suggest that the pathway of MTBE transformation is influenced by in situ H2 concentrations and that in situ H2 concentrations may be an useful indicator of MTBE transformation pathways in ground water systems. [source]


    Biotic and abiotic influences on the recruitment of male perch in Windermere, U.K.

    JOURNAL OF FISH BIOLOGY, Issue 6 2004
    C. G. M. Paxton
    Perch Perca fluviatilis recruitment (based on the catch per unit effort, CPUE, of 2 or 3 year male perch) varied greatly from 1941 to 1995 in Windermere, U.K., with year class strengths strongly synchronous between the two basins of this temperate, mesotrophic lake. Statistically significant modified Ricker (Saila-Lorda) stock-recruitment curves could be fitted to data from three of four sampling sites, while the presence of widespread disease and late summer water temperature were also important explanatory variables. Multiple-regression analyses revealed no influences of pike Esox lucius recruitment, zooplankton abundance, or the climatic influences (i.e. North Atlantic Oscillation and displacement of the summer position of the Gulf Stream) on perch recruitment over and above associated influences from temperature. Fitted models realistically explained up to c. 60% of the observed variation in perch recruitment. [source]


    Recent insights into R gene evolution

    MOLECULAR PLANT PATHOLOGY, Issue 5 2006
    JOHN M. MCDOWELL
    SUMMARY Plants are under strong evolutionary pressure to maintain surveillance against pathogens. Resistance (R) gene-dependent recognition of pathogen avirulence (Avr) determinants plays a major role in plant defence. Here we highlight recent insights into the molecular mechanisms and selective forces that drive the evolution of NB-LRR (nucleotide binding-leucine-rich repeat) resistance genes. New implications for models of R gene evolution have been raised by demonstrations that R proteins can detect cognate Avr proteins indirectly by ,guarding' virulence targets, and by evidence that R protein signalling is regulated by intramolecular interactions between different R functional domains. Comparative genomic surveys of NB-LRR diversity in different species have revealed ancient NB-LRR lineages that are unequally represented among plant taxa, consistent with a Birth and Death Model of evolution. The physical distribution of NB-LRRs in plant genomes indicates that tandem and segmental duplication are important factors in R gene proliferation. The majority of R genes reside in clusters, and the frequency of recombination between clustered genes can vary strikingly, even within a single cluster. Biotic and abiotic factors have been shown to increase the frequency of recombination in reporter transgene-based assays, suggesting that external stressors can affect genome stability. Fitness penalties have been associated with some R genes, and population studies have provided evidence for maintenance of ancient R allelic diversity by balancing selection. The available data suggest that different R genes can follow strikingly distinct evolutionary trajectories, indicating that it will be difficult to formulate universally applicable models of R gene evolution. [source]


    Biotic and abiotic factors act in coordination to amplify hydraulic redistribution and lift

    NEW PHYTOLOGIST, Issue 1 2010
    Gabriel G. Katul
    First page of article [source]


    Motivations for the Restoration of Ecosystems

    CONSERVATION BIOLOGY, Issue 2 2006
    ANDRE F. CLEWELL
    cambio climático; capital natural; restauración ecológica Abstract:,The reasons ecosystems should be restored are numerous, disparate, generally understated, and commonly underappreciated. We offer a typology in which these reasons,or motivations,are ordered among five rationales: technocratic, biotic, heuristic, idealistic, and pragmatic. The technocratic rationale encompasses restoration that is conducted by government agencies or other large organizations to satisfy specific institutional missions and mandates. The biotic rationale for restoration is to recover lost aspects of local biodiversity. The heuristic rationale attempts to elicit or demonstrate ecological principles and biotic expressions. The idealistic rationale consists of personal and cultural expressions of concern or atonement for environmental degradation, reengagement with nature, and/or spiritual fulfillment. The pragmatic rationale seeks to recover or repair ecosystems for their capacity to provide a broad array of natural services and products upon which human economies depend and to counteract extremes in climate caused by ecosystem loss. We propose that technocratic restoration, as currently conceived and practiced, is too narrow in scope and should be broadened to include the pragmatic rationale whose overarching importance is just beginning to be recognized. We suggest that technocratic restoration is too authoritarian, that idealistic restoration is overly restricted by lack of administrative strengths, and that a melding of the two approaches would benefit both. Three recent examples are given of restoration that blends the technocratic, idealistic, and pragmatic rationales and demonstrates the potential for a more unified approach. The biotic and heuristic rationales can be satisfied within the contexts of the other rationales. Resumen:,Las razones por la que los ecosistemas deben ser restaurados son numerosas, dispares, generalmente poco sustentadas, y comúnmente poco apreciadas. Ofrecemos una tipología en la que estas razones,o motivaciones,son ordenadas entre cinco razonamientos: tecnocrático, biótico, heurístico, idealista y pragmático. El razonamiento tecnocrático se refiere a la restauración que es llevada a cabo por agencias gubernamentales u otras grandes organizaciones para satisfacer misiones y mandatos institucionales específicos. El razonamiento biótico de la restauración es la recuperación de aspectos perdidos de la biodiversidad local. El razonamiento heurístico intenta extraer o demostrar principios ecológicos y expresiones bióticas. El razonamiento idealista consiste de expresiones personales y culturales de la preocupación o reparación de la degradación ambiental, reencuentro con la naturaleza y/o cumplimiento espiritual. El razonamiento pragmático busca recuperar o reparar ecosistemas por su capacidad de proporcionar una amplia gama de servicios y productos naturales de la que dependen las economías humanas y para contrarrestar extremos en el clima causados por la pérdida de ecosistemas. Proponemos que la restauración tecnocrática, como se concibe y practica actualmente, es muy corta en su alcance y debiera ampliarse para incluir al razonamiento pragmático, cuya importancia apenas comienza a ser reconocida. Sugerimos que la restauración tecnocrática es demasiado autoritaria, que la restauración idealista esta muy restringida por la falta de fortalezas administrativas, y que una mezcla de los dos enfoques podría beneficiar a ambas. Proporcionamos tres ejemplos recientes de restauración que combinan los razonamientos tecnocrático, idealista y pragmático y demuestran el potencial para un enfoque más unificado. Los razonamientos biótico y heurístico pueden ser satisfechos en el contexto de los otros razonamientos. [source]


    Selection of preadapted populations allowed Senecio inaequidens to invade Central Europe

    DIVERSITY AND DISTRIBUTIONS, Issue 4 2008
    Oliver Bossdorf
    ABSTRACT Invasive species often evolve rapidly in response to the novel biotic and abiotic conditions in their introduced range. Such adaptive evolutionary changes might play an important role in the success of some invasive species. Here, we investigated whether introduced European populations of the South African ragwort Senecio inaequidens (Asteraceae) have genetically diverged from native populations. We carried out a greenhouse experiment where 12 South African and 11 European populations were for several months grown at two levels of nutrient availability, as well as in the presence or absence of a generalist insect herbivore. We found that, in contrast to a current hypothesis, plants from introduced populations had a significantly lower reproductive output, but higher allocation to root biomass, and they were more tolerant to insect herbivory. Moreover, introduced populations were less genetically variable, but displayed greater plasticity in response to fertilization. Finally, introduced populations were phenotypically most similar to a subset of native populations from mountainous regions in southern Africa. Taking into account the species' likely history of introduction, our data support the idea that the invasion success of Senecio inaequidens in Central Europe is based on selective introduction of specific preadapted and plastic genotypes rather than on adaptive evolution in the introduced range. [source]


    Prediction and validation of the potential global distribution of a problematic alien invasive species , the American bullfrog

    DIVERSITY AND DISTRIBUTIONS, Issue 4 2007
    Gentile Francesco Ficetola
    ABSTRACT Predicting the probability of successful establishment and invasion of alien species at global scale, by matching climatic and land use data, is a priority for the risk assessment. Both large- and local-scale factors contribute to the outcome of invasions, and should be integrated to improve the predictions. At global scale, we used climatic and land use layers to evaluate the habitat suitability for the American bullfrog Rana catesbeiana, a major invasive species that is among the causes of amphibian decline. Environmental models were built by using Maxent, a machine learning method. Then, we integrated global data with information on richness of native communities and hunting pressure collected at the local scale. Global-scale data allowed us to delineate the areas with the highest suitability for this species. Predicted suitability was significantly related to the invasiveness observed for bullfrog populations historically introduced in Europe, but did not explain a large portion of variability in invasion success. The integration of data at the global and local scales greatly improved the performance of models, and explained > 57% of the variance in introduction success: bullfrogs were more invasive in areas with high suitability and low hunting pressure over frogs. Our study identified the climatic factors entailing the risk of invasion by bullfrogs, and stresses the importance of the integration of biotic and abiotic data collected at different spatial scales, to evaluate the areas where monitoring and management efforts need to be focused. [source]


    Evaluating reserves for species richness and representation in northern California

    DIVERSITY AND DISTRIBUTIONS, Issue 4 2006
    Jeffrey R. Dunk
    ABSTRACT The Klamath-Siskiyou forests of northern California and southern Oregon are recognized as an area of globally outstanding biological distinctiveness. When evaluated at a national or global level, this region is often, necessarily, considered to be uniformly diverse. Due to large variation in biotic and abiotic variables throughout this region, however, it is unlikely that biological diversity is uniformly distributed. Furthermore, land management decisions nearly always occur at spatial scales smaller than this entire region. Therefore, we used field data from a random sampling design to map the distribution of local and regional richness of terrestrial molluscs and salamanders within northern California's portion of the Klamath-Siskiyou region. We also evaluated the protection afforded by reserves established for varying reasons (e.g. for inspiration and recreation for people vs. species conservation) to hotspots of species richness and species representation of these taxa. No existing reserves were created with these taxa in mind, yet it was assumed that reserves established largely around considerations for the northern spotted owl (Strix occidentalis caurina) would afford adequate protection for many lesser-known species. Species of terrestrial molluscs and salamanders share two general features: (1) they have extremely low vagility, and (2) they are often associated with moist, cool microclimates. Existing reserves disproportionately included areas of hotspots of species richness for both taxa, when hotspots included the richest c. 25% of the area, whereas non-reserved lands contained greater than expected areas with lower species richness. However, when a more strict definition of hotspot was used (i.e. the richest c.10% of areas), local hotspots for both taxa were not disproportionately found in reserves. Reserves set aside largely for human aesthetics and recreation and those set aside for biodiversity both contributed to the protection of areas with high (greatest 25%) species richness. Existing biodiversity reserves represented 68% of mollusc species and 73% of salamander species, corresponding to the 99th and 93rd percentiles, respectively, of species representation achieved by simulating a random distribution of the same total area of reservation. Cumulatively, however, reserves set aside for inspiration and biodiversity represented 83% of mollusc species and 91% of salamander species. The existing reserves provide conservation value for terrestrial molluscs and salamanders. This reserve network, however, should not be considered optimal for either taxa. [source]


    Risk assessment for nonindigenous pests: 2.

    DIVERSITY AND DISTRIBUTIONS, Issue 5 2001
    Accounting for interyear climate variability
    Abstract The paper firstly discusses the importance of accounting for interyear variability when assessing the likelihood of establishment of an alien pest. The potential establishment of Colorado beetle (Leptinotarsa decemlineata) is used as an illustration within the geographical context of England and Wales. An aggregate risk index is introduced as a probabilistic representation of the likelihood that a pest might complete a single generation over a 30-year period (1961,90). Data for individual years were used to compute, objectively, the interyear distribution of risk across the landscape. The standard deviation in area at risk (26 800 km2) was high relative to the average proportion of the landscape potentially at risk (95 700 km2). In 40% of years, the area at risk was estimated to be higher than ,average'. Secondly, the paper demonstrates multiple indices of risk that reflect different aspects of pest risk assessment. Viewing risk from a variety of perspectives provides a means of gauging the consistency and therefore reliability of the results. This contrasts with current practice, where a single mapped output is commonly presented to decision makers. Modelling using a daily time step allowed the use of indices to investigate the long-term probabilities of biotic and abiotic events of short duration. These indices include estimates of pest activity and flight potential. [source]


    Spatial and temporal hotspots of termite-driven decomposition in the Serengeti

    ECOGRAPHY, Issue 3 2010
    Bernd P. Freymann
    Ecosystem engineers are organisms that directly or indirectly control the availability of resources to other organisms by causing physical state changes in biotic or abiotic materials. Termites (Insecta, Isoptera) are among the most important ecosystem engineers in tropical ecosystems. We used a field experiment in the tall grasslands of Serengeti National Park, Tanzania, to investigate 1) the consumption by termites of grass litter and dung baits along the landscape gradient of catena position, and 2) seasonal variation in litter and dung removal. Our maps of termitaria and patterns of bait removal revealed clear spatial and temporal hotspots of termite activity. In the dry season termites removed more baits at the top-catena positions than at the bottom positions, but there was no effect of catena position in the wet season. Spatial hotspots of termite activity overlapped with those of both mammalian herbivores and predators. Within the framework of ecosystem engineering, this study suggests that intraspecific aspects of spatial heterogeneity and temporal variability deserve much greater consideration. [source]


    Web building flexibility of an orb-web spider in a heterogeneous agricultural landscape

    ECOGRAPHY, Issue 5 2008
    Dries Bonte
    Intensification of land-use in agricultural landscapes is responsible for a decline of biodiversity which provide important ecosystem services like pest-control. Changes in landscape composition may also induce behavioural changes of predators in response to variation in the biotic or abiotic environment. By controlling for environmentally confounding factors, we here demonstrate that the orb web spider Araneus diadematus alters its web building behaviour in response to changes in the composition of agricultural landscapes. Thereby, the species increases its foraging efficiency (i.e. investments in silk and web asymmetry) with an increase of agricultural land-use at intermediate spatial scales. This intensification is also related to a decrease in the abundance of larger prey. A negative effect of landscape properties at similar spatial scales on spider fitness was recorded when controlling for relative investments in capture thread length. This study consequently documents the web building flexibility in response to changes in landscape composition, possibly due to changes in prey availability. [source]


    Variation in the abundance of fungal endophytes in fescue grasses along altitudinal and grazing gradients

    ECOGRAPHY, Issue 3 2007
    Gustaf Granath
    Epichloë festucae, a common fungal symbiont of the genus Festuca (family Poaceae), can provide its host plant with protection against herbivores. However, infection might also be associated with a cost to its host plant. We examined the distribution of Epichloë festucae infection in natural populations of three fescue grasses, Festuca rubra, F. ovina and F. vivipara, on mountains in northern Sweden to determine whether infection frequency varied with reindeer Rangifertarandus grazing pressure and altitude. Two differently-scaled approaches were used: 1) infection frequency was measured at a local scale along ten elevational transects within a ca 400 km2 area and 2) infection frequency was measured on a regional scale along elevational transects on 17 mountains classified as having a history of high or low reindeer grazing pressure. Mean infection frequencies in F. rubra were 10% (vegetative tillers at a local scale), and 23% (flowering culms at a regional scale), and in F. ovina they were 13% (local scale) and 15% (regional scale). Endophyte infection frequency in F. vivipara, was, on average, 12% (local scale) and 37% (regional scale). In F. rubra, infection decreased significantly with increasing altitude at both the local and regional scale, and was positively correlated with grazing pressure. In F. ovina, an opposite trend was found at the regional scale: infection frequency increased significantly with increasing altitude, while no discernible distribution pattern was observed at the local scale. No elevational trends were observed in infection of F. vivipara. These patterns in the distribution of endophyte-infected grasses in non-agricultural ecosystems may be explained by both biotic (grazing) and abiotic factors (altitude). Differences in ecology and life history of the studied grass species may also be of importance for the different results observed among species. [source]


    Antixenosis phloem-based resistance to aphids: is it the rule?

    ECOLOGICAL ENTOMOLOGY, Issue 4 2010
    VINCENT LE ROUX
    1. The concept of plant defence syndrome states that plant species growing in similar biotic or abiotic constraints should have convergent defensive traits. This article is a first step to test the prediction of this concept, by conducting experiments on wild Solanum species (or accessions) that originated from the Andes. The nature and the tissue localisation of the resistance of five wild Solanum species known to be resistant against the aphids Myzus persicae and Macrosiphum euphorbiae were determined by olfactometry and electrical penetration graph experiments. 2. Volatile organic compounds may contribute to wild Solanum resistance, depending on Solanum accessions and aphid species. Volatiles of S. bukasovii and S. stoloniferum PI 275248 were not attractive to M. persicae, whereas S. bukasovii was repulsive to M. euphorbiae. In contrast, volatiles of S. stoloniferum PI 275248 were attractive for M. euphorbiae. 3. Some wild Solanum species presented a generalised resistance in all plant tissues, so as for S. bukasovii and S. stoloniferum PI 275248 against M. persicae. However, except for S. bukasovii which was susceptible to M. euphorbiae, all tested Solanum species presented a phloem-based antixenosis resistance against the two aphid species. 4. A review of articles focused on the nature of resistance of wild Solanum species against aphids corroborated with our results, i.e. a phloem-based antixenosis resistance against aphids is the rule concerning the system aphids,wild Solanum species. [source]


    The spatial pattern of soil-dwelling termites in primary and logged forest in Sabah, Malaysia

    ECOLOGICAL ENTOMOLOGY, Issue 1 2007
    SARAH E. DONOVAN
    Abstract 1.,Primary and logged lowland dipterocarp forest sites were sampled for subterranean termites using soil pits located on a grid system in order to detect any patchiness in their distribution. 2.,A spatial pattern in termite distributions was observed in the primary and logged sites, but the response differed between soil-feeding and non-soil-feeding termites. 3.,Spatial analysis showed that soil-feeding termites were homogeneously distributed in the primary forest but significantly aggregated in the logged forest. This pattern was reversed for non-soil-feeding termites and may result from differences in resource provisioning between the two sites. 4.,Gaps in termite distribution comprised a greater area than patches for both feeding groups and sites, but gaps dominated the logged site. 5.,A significant association between soil-feeding and non-soil-feeding termite distributions occurred at both sites. This arose from an association between patches in the primary forest and between gaps in the logged forest. 6.,Termite spatial pattern was optimally observed at a minimum extent of 64 m and lag of 2 m. 7.,The spatially explicit SADIE (Spatial Analysis by Distances IndicEs) analyses were more successful than (non-spatially explicit) multivariate analysis (Canonical Correspondence Analysis) at detecting associations between termite spatial distributions and that of other biotic and abiotic variables. [source]


    A review of relationships between interspecific competition and invasions in fruit flies (Diptera: Tephritidae)

    ECOLOGICAL ENTOMOLOGY, Issue 5 2004
    Pierre-Francois Duyck
    Abstract., 1. A number of invasions in the family Tephritidae (fruit flies) have been observed worldwide despite quarantine procedures. In this review, the potential importance of interspecific competition and competitive displacement among different tephritid species is evaluated in the context of recent invasions. 2. Where polyphagous tephritid species have been introduced in areas already occupied by a polyphagous tephritid, interspecific competition has resulted in a decrease in number and niche shift of the pre-established species. No reciprocal invasions have been observed. 3. The data on tephritid invasions seem to support a hierarchical mode of competition; however, complete exclusion usually did not occur. Indeed, tephritid distribution and abundance are markedly structured by various abiotic (mostly climatic) and biotic (host plants) factors. 4. The primary determinant of competitive interactions in near-optimal conditions, such as lowlands with abundant fruit plantations, is probably the life-history strategy. The r,K gradient could be used as a predictor of potential invaders, because K traits (such as large adult size) may favour both exploitation and interference competition. 5. For future research, a better understanding of competition mechanisms seems essential. Different species competing in the same area should be compared with respect to: (i) demographic parameters, (ii) the outcome of experimental co-infestations on the same fruit, and (iii) behavioural and chemical interference mechanisms. [source]


    Factors driving pathogenicity vs. prevalence of amphibian panzootic chytridiomycosis in Iberia

    ECOLOGY LETTERS, Issue 3 2010
    Susan F. Walker
    Ecology Letters (2010) 13: 372,382 Abstract Amphibian chytridiomycosis is a disease caused by the fungus Batrachochytrium dendrobatidis (Bd). Whether Bd is a new emerging pathogen (the novel pathogen hypothesis; NPH) or whether environmental changes are exacerbating the host-pathogen dynamic (the endemic pathogen hypothesis; EPH) is debated. To disentangle these hypotheses we map the distribution of Bd and chytridiomycosis across the Iberian Peninsula centred on the first European outbreak site. We find that the infection-free state is the norm across both sample sites and individuals. To analyse this dataset, we use Bayesian zero-inflated binomial models to test whether environmental variables can account for heterogeneity in both the presence and prevalence of Bd, and heterogeneity in the occurrence of the disease, chytridiomycosis. We also search for signatures of Bd -spread within Iberia using genotyping. We show (1) no evidence for any relationship between the presence of Bd and environmental variables, (2) a weak relationship between environmental variables and the conditional prevalence of infection, (3) stage-dependent heterogeneity in the infection risk, (4) a strong association between altitude and chytridiomycosis, (5) multiple Iberian genotypes and (6) recent introduction and spread of a single genotype of Bd in the Pyrenees. We conclude that the NPH is consistent with the emergence of Bd in Iberia. However, epizootic forcing of infection is tied to location and shaped by both biotic and abiotic variables. Therefore, the population-level consequences of disease introduction are explained by EPH-like processes. This study demonstrates the power of combining surveillance and molecular data to ascertain the drivers of new emerging infections diseases. [source]


    Impact of animal waste lagoon effluents on chlorpyrifos degradation in soils

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2000
    Xinjiang Huang
    Abstract Animal-derived lagoon effluents are a good source of inorganic nutrients and organic matter; however, they may impact the degradation and transport of soil-applied pesticides. The degradation of chlorpyrifos in poultry-, swine-, and cow-derived effluents and effluent-soil matrices were studied using batch and column incubation studies. Chlorpyrifos was degraded by aerobic microbial processes in animal-derived lagoon effluents. Microbial community analysis by denaturing gradient gel electrophoresis of polymerase chain reaction-amplified 16S ribosomal ribonucleic acid genes showed that a single band became dominant in effluent during chlorpyrifos degradation. In soils, both biotic and abiotic degradation contributed significantly to the overall dissipation of chlorpyrifos. Large differences in degradation rates were observed between soils, with the fastest rate observed in soil with higher pH and cation-exchange capacity. Effluents appeared to have only a minor effect on chlorpyrifos degradation in soils, although effluent-induced increases in soil-solution pH over time may enhance hydrolysis by a few percent in low-pH soils. Soil properties, not effluent properties, appear to control chlorpyrifos degradation under laboratory conditions; however, the impact on changes in soil properties and microbial ecology with long-term effluent irrigation warrants further investigation. [source]


    Whole effluent toxicity testing,usefulness, level of protection, and risk assessment

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2000
    Peter M. Chapman
    Abstract The general status of whole effluent toxicity (WET) tests is assessed relative to their generally accepted purpose of identifying, characterizing, and eliminating toxic effects of effluents on aquatic resources. Although WET tests are useful, they are not perfect tools (no perfect tools exist). Imperfections include the innate variability of these tests, due both to biotic and anthropogenic factors; the reality of species differences both between the laboratory and the field and within the field; and differences between the laboratory and the receiving environment. Whole effluent toxicity tests may be overprotective (because of their conservative nature, the absence of environmental and ecological processes that could ameliorate exposure, and sensitivity to noncontaminant effects), underprotective (because the most sensitive species cannot be tested, multiple stresses tend to be present in the receiving environment, and failure to account for food chain effects or all possible endpoints), or offer an uncertain level of protection (intermittent doses and mixtures in the environment, adaptations, and hormesis). The implication of hormesis and inverted U-shaped dose responses for WET testing are reviewed in particular detail. Comparisons to field conditions indicate that WET tests are not reliable predictors of effects or lack of effects in the receiving environment. Whole effluent toxicity tests are only the first stage in a risk assessment and as such identify hazard, not risk. Identification of risk requires discarding the concept of independent applicability. The appropriate use of WET tests is identified in the context of their advantages and disadvantages. [source]


    PERSPECTIVE: MODELS OF SPECIATION: WHAT HAVE WE LEARNED IN 40 YEARS?

    EVOLUTION, Issue 10 2003
    Sergey Gavrilets
    Abstract Theoretical studies of speciation have been dominated by numerical simulations aiming to demonstrate that speciation in a certain scenario may occur. What is needed now is a shift in focus to identifying more general rules and patterns in the dynamics of speciation. The crucial step in achieving this goal is the development of simple and general dynamical models that can be studied not only numerically but analytically as well. I review some of the existing analytical results on speciation. I first show why the classical theories of speciation by peak shifts across adaptive valleys driven by random genetic drift run into trouble (and into what kind of trouble). Then I describe the Bateson-Dobzhansky-Muller (BDM) model of speciation that does not require overcoming selection. I describe exactly how the probability of speciation, the average waiting time to speciation, and the average duration of speciation depend on the mutation and migration rates, population size, and selection for local adaptation. The BDM model postulates a rather specific genetic architecture of reproductive isolation. I then show exactly why the genetic architecture required by the BDM model should be common in general. Next I consider the multilocus generalizations of the BDM model again concentrating on the qualitative characteristics of speciation such as the average waiting time to speciation and the average duration of speciation. Finally, I consider two models of sympatric speciation in which the conditions for sympatric speciation were found analytically. A number of important conclusions have emerged from analytical studies. Unless the population size is small and the adaptive valley is shallow, the waiting time to a stochastic transition between the adaptive peaks is extremely long. However, if transition does happen, it is very quick. Speciation can occur by mutation and random drift alone with no contribution from selection as different populations accumulate incompatible genes. The importance of mutations and drift in speciation is augmented by the general structure of adaptive landscapes. Speciation can be understood as the divergence along nearly neutral networks and holey adaptive landscapes (driven by mutation, drift, and selection for adaptation to a local biotic and/or abiotic environment) accompanied by the accumulation of reproductive isolation as a by-product. The waiting time to speciation driven by mutation and drift is typically very long. Selection for local adaptation (either acting directly on the loci underlying reproductive isolation via their pleiotropic effects or acting indirectly via establishing a genetic barrier to gene flow) can significantly decrease the waiting time to speciation. In the parapatric case the average actual duration of speciation is much shorter than the average waiting time to speciation. Speciation is expected to be triggered by changes in the environment. Once genetic changes underlying speciation start, they go to completion very rapidly. Sympatric speciation is possible if disruptive selection and/or assortativeness in mating are strong enough. Sympatric speciation is promoted if costs of being choosy are small (or absent) and if linkage between the loci experiencing disruptive selection and those controlling assortative mating is strong. [source]


    Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid-signalling module

    FEBS JOURNAL, Issue 17 2009
    Andrea Chini
    Jasmonic acid (JA) and its derivates, collectively known as jasmonates (JAs), are essential signalling molecules that coordinate the plant response to biotic and abiotic challenges, in addition to several developmental processes. The COI1 F-box and additional SCF modulators have long been known to have a crucial role in the JA-signalling pathway. Downstream JA-dependent transcriptional re-programming is regulated by a cascade of transcription factors and MYC2 plays a major role. Recently, JAZ family proteins have been identified as COI1 targets and repressors of MYC2, defining the ,missing link' in JA signalling. JA,Ile has been proposed to be the active form of the hormone, and COI1 is an essential component of the receptor complex. These recent discoveries have defined the core JA-signalling pathway as the module COI1/JAZs/MYC2. [source]


    Seasonal and long-term changes in fishing depth of Lake Constance whitefish

    FISHERIES MANAGEMENT & ECOLOGY, Issue 5 2010
    G. THOMAS
    Abstract, The ecosystem of Lake Constance in central Europe has undergone profound modifications over the last six decades. Seasonal and inter-annual changes in the vertical distribution patterns of whitefish were examined and related to changes in biotic and abiotic gradients. Between 1958 and 2007, the average fishing depth in late summer and autumn was related to two factors influencing food supply of whitefish , lake productivity and standing stock biomass. In years with low food supply, whitefish were harvested from greater depths, where temperatures were up to 4 °C lower. The whitefish's distribution towards colder water might be a bioenergetic optimisation behaviour whereby fish reduce metabolic losses at lower temperatures, or it may result from a reassessment of habitat preference under conditions of limited food supply, according to the ideal free distribution theory. [source]


    Use of tag data to compare growth rates of Atlantic coast striped bass stocks

    FISHERIES MANAGEMENT & ECOLOGY, Issue 5 2003
    S. A. Welsh
    Abstract Migratory stocks of Atlantic coast striped bass, Morone saxatilis (Walbaum), range primarily from North Carolina (NC) northward to Canadian waters. Between 1986 and 2000, 267 045 wild striped bass were tagged and released from NC to Massachusetts as part of the Cooperative Striped Bass Tagging Program. Direct measurements of growth of individual fish can be obtained from tag data and are useful for understanding the dynamics of fish populations. Growth rates from regressions of length-increment vs. time-at-liberty were estimated for striped bass tagged and released in three southern states [NC, Virginia (VA) and Maryland (MD)] and three northern states (New Jersey, New York and Rhode Island). Striped bass tagged in waters of northern states grew faster (significantly steeper regression slopes) than those tagged in southern areas. Migratory patterns, stock mixing, and unmeasured biotic and abiotic influences on growth precluded conclusions that observed growth patterns are stock-specific. These results, however, indicate latitudinal differences in growth rates, and should be considered in future research and management of Atlantic coast striped bass. [source]


    Habitat associations of Atlantic herring in the Shetland area: influence of spatial scale and geographic segmentation

    FISHERIES OCEANOGRAPHY, Issue 3 2001
    CHRISTOS D. Maravelias
    This study considers the habitat associations of a pelagic species with a range of biotic and abiotic factors at three different spatial scales. Generalized additive models (GAM) are used to analyse trends in the distributional abundance of Atlantic herring (Clupea harengus) in relation to thermocline and water depth, seabed roughness and hardness, sea surface salinity and temperature, zooplankton abundance and spatial location. Two geographical segments of the population, those east and west of the Shetland Islands (northern North Sea, ICES Div IVa), are examined. The differences in the ecological preferences of the species in these two distinct geographical areas are elucidated and the degree that these environmental relationships might be modulated by the change of support of the data is also considered. Part of the observed variability of the pre-spawning distribution of herring was explained by different parameters in these two regions. Notwithstanding this, key determinants of the species' spatial aggregation in both areas were zooplankton abundance and the nature of the seabed substrate. The relative importance of the variables examined did not change significantly at different spatial scales of the observation window. The diverse significance of various environmental factors on herring distribution was attributed mainly to the interaction of species' dynamics with the different characteristics of the ecosystem, east and west of the Shetland Islands. Results suggest that the current 2.5 nautical miles as elementary sampling distance unit (ESDU) is a reasonable sampling scheme that combines the need to reduce the data volume while maintaining spatial resolution to distinguish the species/environment relationships. [source]


    Changes in fish assemblages in catchments in north-eastern Spain: biodiversity, conservation status and introduced species

    FRESHWATER BIOLOGY, Issue 8 2010
    ALBERTO MACEDA-VEIGA
    Summary 1. North-eastern Spain is a hot spot for the introduction of alien fish species, and its native fish fauna is one of the most endangered worldwide. We used an extensive data set from 2002 to 2003 and historical information from the area to characterize fish diversity and establish conservation priorities in river catchments. 2. Diversity indices were used to characterize fish diversity at the basin scale. An index of conservation status was applied for each species, which considers the occurrence, abundance and endemicity of each taxon. We used indirect ordination methods to test the relationship among basin features and to identify those variables most correlated with each other. To identify physical, biotic and environmental characteristics that seem to make a basin particularly susceptible to invasion, we performed a step-wise multiple regression to examine the relationship between the number of native, translocated and introduced fish species (including the original native species richness of each basin), and landscape variables. 3. Over a period of approximately 50 years, the mean range size of native fish species has decreased by 60%. The greatest decline occurred in Gasterosteus gymnurus, Anguilla anguilla and Salaria fluviatilis, for which species over 75% of the original distribution area has been lost. The species with the highest conservation index were Gasterosteus gymnurus and Salaria fluviatilis. 4. Basin area and the catchment type explained 70% of variation in native species richness, whereas the number of dams and basin area accounted for more than 80% of variation in the number of introduced species. 5. The original native species richness and the number of introduced species at basin scale were not related, and thus there was no evidence of "biotic resistance" to invasion. The restoration of natural hydrologic processes and the development of specific management tools to protect native species, such as the prioritization of areas for fish conservation and the eradication of local populations of exotic species, are required to restore native fish fauna in these catchments. [source]


    Disturbance history influences the distribution of stream invertebrates by altering microhabitat parameters: a field experiment

    FRESHWATER BIOLOGY, Issue 5 2008
    MICHAEL EFFENBERGER
    Summary 1. We investigated the effects of local disturbance history and several biotic and abiotic habitat parameters on the microdistribution of benthic invertebrates after an experimental disturbance in a flood-prone German stream. 2. Bed movement patterns during a moderate flood were simulated by scouring and filling stream bed patches (area 0.49 m2) to a depth of 15,20 cm. Invertebrates were investigated using ceramic tiles as standardized substrata. After 1, 8, 22, 29, 36 and 50 days, we sampled one tile from each of 16 replicates of three bed stability treatments (scour, fill and stable controls). For each tile, we also determined water depth, near-bed current velocity, the grain size of the substratum beneath the tile, epilithic algal biomass and standing stock of particulate organic matter (POM). 3. Shortly after disturbance, total invertebrate density, taxon richness and density of the common taxa Baetis spp. and Chironomidae were highest in stable patches. Several weeks after disturbance, by contrast, Baetis spp. and Hydropsychidae were most common in fill and Leuctra spp. in scour patches. The black fly Simulium spp. was most abundant in fill patches from the first day onwards. Community evenness was highest in scour patches during the entire study. 4. Local disturbance history also influenced algal biomass and POM standing stock at the beginning of the experiment, and water depth, current velocity and substratum grain size throughout the experiment. Scouring mainly exposed finer substrata and caused local depressions in the stream bed characterized by slower near-bed current velocity. Algal biomass was higher in stable and scour patches and POM was highest in scour patches. In turn, all five common invertebrate taxa were frequently correlated with one or two of these habitat parameters. 5. Our results suggest that several ,direct' initial effects of local disturbance history on the invertebrates were subsequently replaced by ,indirect' effects of disturbance history (via disturbance-induced changes in habitat parameters such as current velocity or food). [source]


    The influence of stream invertebrate composition at neighbouring sites on local assemblage composition

    FRESHWATER BIOLOGY, Issue 2 2005
    R. A. SANDERSON
    Summary 1. The composition of freshwater invertebrate assemblages at a location is determined by a range of physico-chemical and biotic factors in the local environment, as well as larger-scale spatial factors such as sources of recruits. We assessed the relative importance of the species composition of local neighbourhoods and proximal environmental factors on the composition of invertebrate assemblages. 2. Macroinvertebrate assemblages were sampled at 188 running-water sites in the catchment of the River Rede, north-east England. A total of 176 species were recorded. 3. Environmental data, in the form of 13 biotic and abiotic measurements that described stream physical structure, aquatic vegetation and water characteristics, were recorded for each site. Detrended correspondence analysis was then used to simplify nine of these stream environmental variables to create an index of stream structure. 4. The species composition of the invertebrate assemblages was related to the environmental variables, using an information theoretic approach. The impact of the species composition of neighbouring sites on each site was determined using Moran's I and autoregressive modelling techniques. 5. Species composition was primarily associated with water pH and stream structure. The importance of the species composition of neighbouring sites in determining local species assemblages differed markedly between taxa. The autoregressive component was low for Coleoptera, intermediate for Trichoptera and Plecoptera, and high for Ephemeroptera. 6. We hypothesise that the observed differences in the autoregressive component amongst these orders reflects variation in their dispersal abilities from neighbouring sites. [source]


    Is water temperature an adequate predictor of recruitment success in cyprinid fish populations in lowland rivers?

    FRESHWATER BIOLOGY, Issue 4 2003
    A. D. Nunn
    SUMMARY 1. Higher than average ambient water temperature in the first year of life may be responsible for strong cohorts of adult cyprinid fish. Whilst temperature explains much of the variation in year-class strength (YCS), however, it is not the only influential factor as high temperature does not inevitably yield strong year-classes. Furthermore, years in which a strong year-class is prevalent in one species do not necessarily result in strong year-classes in other coexisting species, suggesting other biotic and abiotic factors are important in regulating recruitment success. 2. The relationships between water temperature, river discharge, the position of the Gulf Stream, 0-group fish growth and recruitment success (YCS) were examined in three cyprinid fish species in an English lowland river, using a 15-year data set. 3. Mean length of 0-group fish at the end of the summer was positively correlated with water temperature (cumulative degree-days >12 °C) and negatively correlated with river discharge (cumulative discharge-days above basal discharge rate). Water temperature was negatively correlated with river discharge. 4. YCS was positively correlated with mean 0-group fish length at the end of the summer and with the position of the North Wall of the Gulf Stream. 5. 'Critical periods' (i.e. periods in the first summer of life when fish may be more susceptible to increases in river discharge) were difficult to discern because of interannual variations in river discharge relative to the timing of fish hatching. YCS of roach and chub was most strongly correlated with discharge in the period from June to September inclusive, while YCS of dace was most significantly correlated with discharge in August. 6. River discharge (rather than water temperature) may be the key factor in determining YCS, either directly (through discharge-induced mortality) or indirectly (via reduced growth at lower water temperatures, discharge-associated increases in energy expenditure or reduced food availability). It could be that, in effect, water temperature determines potential YCS while discharge determines realised YCS. [source]


    The biology and ecology of lotic rotifers and gastrotrichs

    FRESHWATER BIOLOGY, Issue 1 2000
    Claudia Ricci
    Summary 1The occurrence of Rotifera and Gastrotricha in the meiobenthos of lotic habitats is reviewed. About 150 rotifer and 30 gastrotrich species are reported in such habitats worldwide. 2The two phyla share some morphological and biological features that might account for their presence in the meiofauna. Small-size, a soft and elongate body, adhesive glands on the posterior body end, movement through cilia, relatively short life cycles, parthenogenesis and dormant stages are common characteristics. 3Most species of both taxa inhabiting the superficial sediments in streams and rivers may move downward into the hyporheos in response to both biotic (predation) and abiotic (spates, erosion, desiccation) disturbances. [source]


    Temporal, spatial and biotic variations in extrafloral nectar secretion by Macaranga tanarius

    FUNCTIONAL ECOLOGY, Issue 6 2000
    Heil M.
    Abstract 1Many plants produce extrafloral nectar (EFN) to nourish ants and other animals which defend them against herbivores. We aimed to find reasons for the high variability in amounts of EFN produced by most plant species. We investigated the influence of several biotic and abiotic factors (time of day, leaf age, nectar removal and leaf damage) on secretion rates of EFN in the common south-east Asian pioneer tree species, Macarangatanarius (L.) Muell. Arg. 2In most experiments leaves were washed with pure water and bagged in nets to protect them against nectar-collecting insects, and nectar was collected and quantified 24 h later. Six soluble sugars and up to eight amino acids were detected in nectar samples derived from untreated, field-grown plants. Total amounts of soluble substances varied more than the relative composition of EFN. 3Nectar secretion rates were highest on young, expanded leaves. A diurnal pattern with a secretion peak in the first 2 h after dusk was detected in the field. Nectar removal had a positive effect and its accumulation a negative effect on further EFN production. Artificial leaf damage (punching leaves with a needle or removing parts of the leaf blade with scissors) led to a significant induction of EFN production for the next 3 days. 4Extrafloral nectar of M. tanarius was secreted in complex patterns influenced by different biotic and abiotic factors; its production appeared to be adapted temporally and spatially in order to ensure optimal use of invested resources. [source]