Biotechnology Products (biotechnology + products)

Distribution by Scientific Domains


Selected Abstracts


Pharmacokinetic aspects of biotechnology products

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 9 2004
Lisa Tang
Abstract In recent years, biotechnologically derived peptide and protein-based drugs have developed into mainstream therapeutic agents. Peptide and protein drugs now constitute a substantial portion of the compounds under preclinical and clinical development in the global pharmaceutical industry. Pharmacokinetic and exposure/response evaluations for peptide and protein therapeutics are frequently complicated by their similarity to endogenous peptides and proteins as well as protein nutrients. The first challenge frequently comes from a lack of sophistication in various analytical techniques for the quantification of peptide and protein drugs in biological matrices. However, advancements in bioassays and immunoassays,along with a newer generation of mass spectrometry-based techniques,can often provide capabilities for both efficient and reliable detection. Selection of the most appropriate route of administration for biotech drugs requires comprehensive knowledge of their absorption characteristics beyond physicochemical properties, including chemical and metabolic stability at the absorption site, immunoreactivity, passage through biomembranes, and active uptake and exsorption processes. Various distribution properties dictate whether peptide and protein therapeutics can reach optimum target site exposure to exert the intended pharmacological response. This poses a potential problem, especially for large protein drugs, with their typically limited distribution space. Binding phenomena and receptor-mediated cellular uptake may further complicate this issue. Elimination processes,a critical determinant for the drug's systemic exposure,may follow a combination of numerous pathways, including renal and hepatic metabolism routes as well as generalized proteolysis and receptor-mediated endocytosis. Pharmacokinetic/pharmacodynamic (PK/PD) correlations for peptide and protein-based drugs are frequently convoluted by their close interaction with endogenous substances and physiologic regulatory feedback mechanisms. Extensive use of pharmacokinetic and exposure/response concepts in all phases of drug development has in the past been identified as a crucial factor for the success of a scientifically driven, evidence-based, and thus accelerated drug development process. Thus, PK/PD concepts are likely to continue and expand their role as a fundamental factor in the successful development of biotechnologically derived drug products in the future. © 2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 93:2184,2204, 2004 [source]


Proactive consumer consultation: the effect of information provision on response to transgenic animals

JOURNAL OF PUBLIC AFFAIRS, Issue 3-4 2005
David Castle
A national study is reported which proactively engaged 1365 Canadian consumers and solicited their opinions concerning new transgenic salmon and pork products which have not yet entered the marketplace. Respondents were methodically requested to provide initial free-association responses, and then scaled responses to product concepts about which progressively more information was revealed. This combined qualitative and quantitative method was pursued in order to determine initial knowledge levels and subsequent responses with a minimal amount of cueing via question probes. The results indicate that disclosure concerning benefits and risks of these new technologies did not harm judgements about them or estimates of purchase intent. A significant determinant of opinions was the gender of the respondent. Females were more negatively predisposed overall to the concepts and more sensitive to specific information regarding product benefits and risks. The research offers a methodological template for public consultation and communication pre-testing for new biotechnological products. Implications for regulatory policy and information dissemination for new food biotechnology products are discussed. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Anion exchange chromatography provides a robust, predictable process to ensure viral safety of biotechnology products

BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2009
Daniel M. Strauss
Abstract The mammalian cell-lines used to produce biopharmaceutical products are known to produce endogenous retrovirus-like particles and have the potential to foster adventitious viruses as well. To ensure product safety and regulatory compliance, recovery processes must be capable of removing or inactivating any viral impurities or contaminants which may be present. Anion exchange chromatography (AEX) is a common process in the recovery of monoclonal antibody products and has been shown to be effective for viral removal. To further characterize the robustness of viral clearance by AEX with respect to process variations, we have investigated the ability of an AEX process to remove three model viruses using various combinations of mAb products, feedstock conductivities and compositions, equilibration buffers, and pooling criteria. Our data indicate that AEX provides complete or near-complete removal of all three model viruses over a wide range of process conditions, including those typically used in manufacturing processes. Furthermore, this process provides effective viral clearance for different mAb products, using a variety of feedstocks, equilibration buffers, and different pooling criteria. Viral clearance is observed to decrease when feedstocks with sufficiently high conductivities are used, and the limit at which the decrease occurs is dependent on the salt composition of the feedstock. These data illustrate the robust nature of the AEX recovery process for removal of viruses, and they indicate that proper design of AEX processes can ensure viral safety of mAb products. Biotechnol. Bioeng. 2009;102: 168,175. © 2008 Wiley Periodicals, Inc. [source]


Public perceptions of biotechnology

BIOTECHNOLOGY JOURNAL, Issue 9 2007
Alan McHughen Dr.
Abstract The very term ,Biotechnology' elicits a range of emotions, from wonder and awe to downright fear and hostility. This is especially true among non-scientists, particularly in respect of agricultural and food biotechnology. These emotions indicate just how poorly understood agricultural biotechnology is and the need for accurate, dispassionate information in the public sphere to allow a rational public debate on the actual, as opposed to the perceived, risks and benefits of agricultural biotechnology. This review considers first the current state of public knowledge on agricultural biotechnology, and then explores some of the popular misperceptions and logical inconsistencies in both Europe and North America. I then consider the problem of widespread scientific illiteracy, and the role of the popular media in instilling and perpetuating misperceptions. The impact of inappropriate efforts to provide ,balance' in a news story, and of belief systems and faith also impinges on public scientific illiteracy. Getting away from the abstract, we explore a more concrete example of the contrasting approach to agricultural biotechnology adoption between Europe and North America, in considering divergent approaches to enabling coexistence in farming practices. I then question who benefits from agricultural biotechnology. Is it only the big companies, or is it society at large , and the environment-also deriving some benefit? Finally, a crucial aspect in such a technologically complex issue, ordinary and intelligent non-scientifically trained consumers cannot be expected to learn the intricacies of the technology to enable a personal choice to support or reject biotechnology products. The only reasonable and pragmatic alternative is to place trust in someone to provide honest advice. But who, working in the public interest, is best suited to provide informed and accessible, but objective, advice to wary consumers? [source]