Biot Number (biot + number)

Distribution by Scientific Domains


Selected Abstracts


A spreadsheet solution of transient conduction in composite fins

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 5 2002
E. M. A. Mokheimer
Abstract Transient heat transfer through composite fins is investigated by numerical methods. In this regard, governing differential equations of the two-dimensional fin and one-dimensional cladding are studied to examine the effect of Biot number and ratio of thermal conductivities of the fin material to the cladding, on the dimensionless temperature profiles. In addition, the use of spreadsheet programs in solving the composite fin problems is investigated in somewhat more detail with regard to the solution as well as presentation of the graphical results. The results show that one-dimensional analysis, traditionally used in fin analysis, is not applicable for composite fins, particularly when the conductivity ratio of the composite fin materials is very high. Copyright © 2002 John Wiley & Sons, Ltd. [source]


INFLUENCE OF SAMPLE SIZE AND SHAPE ON TRANSPORT PARAMETERS DURING DRYING OF SHRINKING BODIES

JOURNAL OF FOOD PROCESS ENGINEERING, Issue 2 2007
NAJMUR RAHMAN
ABSTRACT An experimental investigation on the influence of sample size and shape on heat and mass transport parameters under natural convection air-drying is presented. Potato cylinders with length of 0.05 m and thicknesses of 0.005, 0.008, 0.010 and 0.016 m, and circular slices with diameter of 0.05 m and thickness of 0.01 m were dried in a laboratory scale hot-air cabinet dryer. Results indicate that each transport parameter exhibits a linear relationship with sample thickness. Convective heat and mass transfer coefficients (hcand hm) decreased whereas moisture diffusion coefficient (Deff) increased with increasing thickness. Considering no sample shrinkage effect in the parameter analysis, for the thickness range considered, the values of hcare found to be underestimated in the range of 29.0,30.6%, whereas those of hmand Deff are overestimated in the range of 33.7,38.0% and 75.9,128.1%, respectively. Using Levenberg,Marquardt algorithm for optimization, a correlation for Biot number for mass transfer (Bim) as a function of drying time and sample thickness is proposed. A close agreement was observed between dimensionless moisture contents predicted by this relation and those obtained from experiments for different sample thicknesses at drying air temperature of 60C. For the same thickness and drying conditions, circular slices caused an increase in each transport parameter significantly. [source]


Explaining the enhanced performance of pulsed bioreactors by mechanistic modeling

AICHE JOURNAL, Issue 5 2008
Amaya Franco
Abstract In this work, steady-state mass balance based models were applied to two UASB reactors and three UAF for a better understanding of the role of pulsation on the efficacy improvement. Models were defined taking into account the hydraulic behavior of each digester and the limiting mechanism of the overall process kinetics (mass transfer or biochemical reaction rate). The application of the model allows to identify that mass transfer was the controlling step in all the reactors, except for the nonpulsed UASB, where methanogenic activity controlled the reactor performance in the last operation steady states. Mass transfer coefficients were higher for pulsed reactors and, in general, a good agreement between those estimated by an empirical correlation and from the model was obtained. Damköhler number values supported that the external mass transfer resistance was not negligible with respect to the process kinetic and in addition, in most cases, it controls the overall process in the reactors. The relative importance of external and internal mass transfer rate was calculated through the Biot number. The values of this dimensionless module indicated that external transport was the main contributor to overall mass transfer resistance. © 2008 American Institute of Chemical Engineers AIChE J, 2008 [source]


Effects of Matrix Cracks on the Thermal Diffusivity of a Fiber-Reinforced Ceramic Composite

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 9 2001
Kathleen R. McDonald
Effects of matrix cracks and the attendant interface debonding and sliding on both the longitudinal and the transverse thermal diffusivities of a unidirectional Nicalon/MAS composite are investigated. The diffusivity measurements are made in situ during tensile testing using a phase-sensitive photothermal technique. The contribution to the longitudinal thermal resistance from each of the cracks is determined from the longitudinal diffusivity along with measurements of crack density. By combining the transverse measurements with the predictions of an effective medium model, the thermal conductance of the interface (characterized by a Biot number) is determined and found to decrease with increasing crack opening displacement, from an initial value of ,1 to ,0.3. This degradation is attributed to the deleterious effects of interface sliding on the thermal conductance. Corroborating evidence of degradation in the interface conductance is obtained from the inferred crack conductances coupled with a unit cell model for a fiber composite containing a periodic array of matrix cracks. Additional notable features of the material behavior include: (i) reductions of ,20% in both the longitudinal and the transverse diffusivities at stresses near the ultimate strength, (ii) almost complete recovery of the longitudinal diffusivity following unloading, and (iii) essentially no change in the transverse diffusivity following unloading. The recovery of the longitudinal diffusivity is attributed to closure of the matrix cracks. By contrast, the degradation in the interface conductance is permanent, as manifest in the lack of recovery of the transverse diffusivity. [source]


The Reaction-Bonded Aluminum Oxide (RBAO) Process: II, The Solid-State Oxidation of RBAO Compacts

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 8 2000
Ender Suvaci
The oxidation kinetics and the fraction of aluminum that is oxidized via solid,gas reaction in reaction-bonded aluminum oxide (RBAO) compacts are shown to be strongly dependent on the oxidation temperature and the characteristics (size and green density) of the RBAO compact. Based on the Biot number, the oxidation process of RBAO compacts is controlled by convective heat transfer. Low heat transfer from the surface of the compact results in too-rapid oxidation, thermal gradients, and core,shell oxidation of the compacts. Uniform oxidation of RBAO compacts is possible by oxidizing at low temperatures (400°,470°C), where slow surface reaction of the aluminum particles controls the oxidation of the compact. A grain model is presented to cover both linear and nonlinear oxidation regimes during the oxidation of a RBAO compact, and this model predicts the experimental results when surface reaction of the aluminum particles is the rate-controlling mechanism and oxidation of the compact occurs uniformly. [source]


Development of warpage and residual stresses in film insert molded parts

POLYMER ENGINEERING & SCIENCE, Issue 7 2009
Hwa Jin Oh
Residual stresses, bending moments, and warpage of film insert molded (FIM) parts were investigated by experimental and numerical analyses. Thermally induced residual stresses in FIM parts were predicted by numerical simulations with both commercial and house codes. Bending moments and warpage of FIM tensile specimens were calculated numerically and compared with experimental results. Thermally induced residual stresses were predicted by utilizing a one-dimensional thermoelastic model where constant material properties are assumed. The residual stress distribution depended remarkably on the Biot number and the heat was removed rapidly through the surface resulting in high residual stresses. Asymmetric residual stresses generated by nonuniform cooling of the part provoked nonuniform shrinkage and warpage of the molded tensile specimen. It was found that the numerically calculated bending moment is in good agreement with the experimental results. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers [source]