Biomass Dynamics (biomass + dynamics)

Distribution by Scientific Domains


Selected Abstracts


Long-term successional forest dynamics: species and community responses to climatic variability

JOURNAL OF VEGETATION SCIENCE, Issue 4 2010
Paul Kardol
Abstract Question: Are trees sensitive to climatic variability, and do tree species differ in their responses to climatic variability? Does sensitivity of forest communities to climatic variability depend on stand composition? Location: Mixed young forest at Walker Branch Watershed near Oak Ridge, East Tennessee, USA. Methods: Using a long-term dataset (1967,2006), we analyzed temporal forest dynamics at the tree and species level, and community dynamics for forest stands that differed in initial species composition (i.e., chestnut oak, oak,hickory, pine, and yellow poplar stands). Using summer drought and growing season temperature as defined climate drivers, we evaluated relationships between forest dynamics and climate across levels of organization. Results: Over the four-decade study period, forest communities underwent successional change and substantially increased in biomass. Variation in summer drought and growing season temperature contributed to temporal biomass dynamics for some tree species, but not for others. Stand-level responses to climatic variability were related to the responses of component species, except in pine stands. Pinus echinata, the dominant species in pine stands, decreased over time due to periodic outbreaks of pine bark beetle (Dendroctonus frontalis). These outbreaks at Walker Branch could not be directly related to climatic conditions. Conclusions: The results indicate that sensitivity of developing forests to climatic variability is stand type-dependent, and hence is a function of species composition. However, in the long term, direct effects of climatic variability on forest dynamics may be small relative to autogenic successional processes or climate-related insect outbreaks. Empirical studies testing for interactions between forest succession and climatic variability are needed. [source]


A MODEL FOR THE BIOECONOMIC EVALUATION OF MARINE PROTECTED AREA SIZE AND PLACEMENT IN THE NORTH SEA

NATURAL RESOURCE MODELING, Issue 4 2002
ALASDAIR BEATTIE
ABSTRACT. The use of marine protected areas (MPAs) as a basic management tool to limit exploitation rates in marine fisheries has been widely suggested. Models are important in predicting the consequences of management decisions and the design of monitoring programs in terms of policy goals. However, few tools are available that consider both multiple fleets and ecosystem scale dynamics. We use a new applied game theory tool, Ecoseed, that operates within a temporally and spatially explicit biomass dynamics model, Ecopath with Ecosim, to evaluate the efficacy of marine protected areas in the North Sea in both ecological and economic terms. The Ecoseed model builds MPAs based on the change in values of predicted economic rents of fisheries and the existence value of biomass pools in the ecosystem. We consider the market values of four fisheries operating in the North Sea: a trawl fishery, a gill net fishery, a seine fishery, and an industrial (reduction) fishery. We apply existence values, scaled such that their aggregate is similar to the total fishery value, to six biomass pools of concern: juvenile cod, haddock, whiting, saithe, seals, and the collective pool ,Other predators' that include marine mammals. Four policy options were considered: to maximize the rent only; to maximize the existence values only; to maximize the sum of the rent and existence values; and, finally, to maximize the sum of the rent and the existence values, but excluding only the trawl fleet from the MPA. The Ecoseed model suggests that policy goals that do not include ecological considerations can negatively impact the rents obtained by the different fishing sectors. The existence values will also be negatively impacted unless the MPA is very large. The Ecoseed model also suggests that policy goals based solely on existence values will negatively impact most fisheries. Under policy options that included ecological considerations, maximum benefits were derived from an MPA that covered 25,40% of the North Sea, placed along the southern and eastern coasts. Finally, the Ecoseed model suggests that an exclusion of the trawl fishery only from the MPA can provide small-to-substantial positive impacts to most species and fleets; this relative impact depends on level of interaction between the trawl fleet and the other fleets target species (e.g., through bycatch). [source]


Modelling of reserve carbohydrate dynamics, regrowth and nodulation in a N2 -fixing tree managed by periodic prunings

PLANT CELL & ENVIRONMENT, Issue 10 2000
F. Berninger
ABSTRACT We used a modified transport resistance approach to model legume tree growth, nodulation and dynamics of reserve carbohydrates after pruning. The model distributes growth between roots and shoots applying the transport resistance approach. Within shoots, growth is divided into leaves, branches and stems applying the pipe model theory. The model also accounts for the metabolic differences of principal N sources, nitrate, ammonium and atmospheric dinitrogen, in a mechanistic way. We compared the simulation results with measured biomass dynamics of Gliricidia sepium (Jacq.) Walp. (Papilionaceae: Robinieae) under humid and subhumid tropical conditions. Comparison showed that the biomass production predicted by the model is close to measured values. Total N2 fixation is also similar to measured values. Qualitatively the model increases the proportion of N2 fixation if roots acquire less mineral N. In the present study, the general form of the model is discussed and compared with similar models. The results encourage the use of this approach for studying biomass dynamics of legume trees under the scheme of periodic prunings. Also, it shows that process-based models have potential in the simulation of trees disturbed by prunings, herbivory or similar factors. [source]