Biodiversity Surrogates (biodiversity + surrogate)

Distribution by Scientific Domains


Selected Abstracts


Measuring the effectiveness of regional conservation assessments at representing biodiversity surrogates at a local scale: A case study in Réunion Island (Indian Ocean)

AUSTRAL ECOLOGY, Issue 2 2010
KARINE PAYET
Abstract In a context of scarce financial and human resources, the allocation of conservation efforts needs to be optimized. Our analysis attempts to draw conclusions on the integration of regional and local conservation assessments, specifically, with regard to the acquisition of fine-scale data to complement the regional assessment. This study undertaken in Réunion Island (Indian Ocean) assessed how biodiversity surrogates targeted at a regional scale represented other biodiversity surrogates at a local scale. Biodiversity surrogates at both scales consisted of species, habitats and processes. Habitats and processes at regional scale were defined using a coarser scale of thematic resolution than at local scale. The surrogacy was tested in terms of incidental representation of local-scale features in the regional assessments, and correlation of irreplaceability values between scales. Near-minimum sets and irreplaceability values were generated using MARXAN software. Our results revealed that conservation targets for processes at local scale were never met incidentally, while threatened species and fragmented habitats were also usually under-represented. More specifically, requiring only 12% of the local planning domain, the application of species as surrogates at regional scale was the least effective option at representing biodiversity features at local scale. In contrast, habitats at a coarse scale of thematic resolution achieved a significant proportion of conservation targets incidentally (67%) and their irreplaceability values were well correlated with the irreplaceability values of surrogates at local scale. The results highlighted that all three types of biodiversity surrogates are complementary for assessing overall biodiversity. Because of the cost of data acquisition, we recommended that the most efficient strategy to develop nested regional/local conservation plans is to apply habitats and processes at a coarse scale of thematic resolution at regional scale, and threatened species and degraded habitats at local scale, with their fine-scale mapping limited to highly transformed areas. [source]


Assessing the relationship between forest types and canopy tree beta diversity in Amazonia

ECOGRAPHY, Issue 4 2010
Thaise Emilio
Planning of conservation priorities has often taken mapped forest types as surrogates for biological complementarity. In the Brazilian Amazon, these exercises have given equal weight to each forest type as if they were all equally distinct. Here, we examine floristic similarity between forest types to assess the reliability of vegetation maps as a surrogate for canopy tree-community composition. We analyzed floristic differences at the genus level between twelve Amazonian forest types using 1184 one-hectare inventories of large trees with three complementary approaches. First, we compared a map of floristic composition, from a uni-dimensional NMDS ordination of the inventories, with a map of coarser-level forest types commonly recognized as distinct by classification systems across Amazonia. Using Mantel and means-difference tests, we next examined the distance-decay of floristic similarity for all paired samples and for the pairs drawn from within and between twelve more finely divided forest types. Finally, we examined the degree of floristic separation of each pair of the twelve forest types using non-parametric analysis of variance. Maps of floristic composition and coarse-level forest types were highly congruent. At the finer level of classification, similarity was only slightly higher when pairs were drawn from the same versus from different forest types. This was true for all geographic distances. Nonetheless, eighty percent of the 66 paired combinations of forest types were significantly different in the unreduced genus-space and nearly half showed little or no overlap in a two-dimensional ordination. Three types were most distinct from all others: white sand, seasonally dry, and bamboo-dominated forests. Here, we show that forest types exhibit variable degrees of separation. For this reason, treating all fine-level forest types as equally distinct results in poor representation of canopy tree beta diversity. We recommend explicitly considering the degree of floristic separation between all forest types , as presented here for Amazonian flora , as a way to improve the use of this biodiversity surrogate. [source]


Synthesis of pattern and process in biodiversity conservation assessment: a flexible whole-landscape modelling framework

DIVERSITY AND DISTRIBUTIONS, Issue 3 2010
Simon Ferrier
Abstract Aim, To describe a general modelling framework for integrating multiple pattern- and process-related factors into biodiversity conservation assessments across whole landscapes. Location, New South Wales (Australia), and world-wide. Methods, The framework allows for a rich array of alternatives to the target-based model traditionally underpinning systematic conservation planning and consists of three broad modelling components. The first component models the future state (condition) of habitat across a landscape as a function of present state, current and projected pressures acting on this state, and any proposed, or implemented, management interventions. The second component uses this spatially explicit prediction of future habitat state to model the level of persistence expected for each of a set of surrogate biodiversity entities. The third component then integrates these individual expectations to estimate the overall level of persistence expected for biodiversity as a whole. Results, Options are explored for tailoring implementation of the framework to suit planning processes varying markedly in purpose, and in availability of data, time, funding and expertise. The framework allows considerable flexibility in the nature of employed biodiversity surrogates (species-level, discrete or continuous community-level) and spatial data structures (polygonal planning units, or fine-scaled raster), the level of sophistication with which each of the three modelling components is implemented (from simple target-based assessment to complex process-based modelling approaches), and the forms of higher-level analysis supported (e.g. optimal plan development, priority mapping, interactive scenario evaluation). Main conclusions, The described framework provides a logical, and highly flexible, foundation for integrating disparate pattern- and process-related factors into conservation assessments in dynamic, multiple-use landscapes. [source]


Progress and challenges in freshwater conservation planning

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 4 2009
Jeanne L. Nel
Abstract 1.Freshwater ecosystems and their associated biota are among the most endangered in the world. This, combined with escalating human pressure on water resources, demands that urgent measures be taken to conserve freshwater ecosystems and the services they provide. Systematic conservation planning provides a strategic and scientifically defensible framework for doing this. 2.Pioneered in the terrestrial realm, there has been some scepticism associated with the applicability of systematic approaches to freshwater conservation planning. Recent studies, however, indicate that it is possible to apply overarching systematic conservation planning goals to the freshwater realm although the specific methods for achieving these will differ, particularly in relation to the strong connectivity inherent to most freshwater systems. 3.Progress has been made in establishing surrogates that depict freshwater biodiversity and ecological integrity, developing complementarity-based algorithms that incorporate directional connectivity, and designing freshwater conservation area networks that take cognizance of both connectivity and implementation practicalities. 4.Key research priorities include increased impetus on planning for non-riverine freshwater systems; evaluating the effectiveness of freshwater biodiversity surrogates; establishing scientifically defensible conservation targets; developing complementarity-based algorithms that simultaneously consider connectivity issues for both lentic and lotic water bodies; developing integrated conservation plans across freshwater, terrestrial and marine realms; incorporating uncertainty and dynamic threats into freshwater conservation planning; collection and collation of scale-appropriate primary data; and building an evidence-base to support improved implementation of freshwater conservation plans. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Measuring the effectiveness of regional conservation assessments at representing biodiversity surrogates at a local scale: A case study in Réunion Island (Indian Ocean)

AUSTRAL ECOLOGY, Issue 2 2010
KARINE PAYET
Abstract In a context of scarce financial and human resources, the allocation of conservation efforts needs to be optimized. Our analysis attempts to draw conclusions on the integration of regional and local conservation assessments, specifically, with regard to the acquisition of fine-scale data to complement the regional assessment. This study undertaken in Réunion Island (Indian Ocean) assessed how biodiversity surrogates targeted at a regional scale represented other biodiversity surrogates at a local scale. Biodiversity surrogates at both scales consisted of species, habitats and processes. Habitats and processes at regional scale were defined using a coarser scale of thematic resolution than at local scale. The surrogacy was tested in terms of incidental representation of local-scale features in the regional assessments, and correlation of irreplaceability values between scales. Near-minimum sets and irreplaceability values were generated using MARXAN software. Our results revealed that conservation targets for processes at local scale were never met incidentally, while threatened species and fragmented habitats were also usually under-represented. More specifically, requiring only 12% of the local planning domain, the application of species as surrogates at regional scale was the least effective option at representing biodiversity features at local scale. In contrast, habitats at a coarse scale of thematic resolution achieved a significant proportion of conservation targets incidentally (67%) and their irreplaceability values were well correlated with the irreplaceability values of surrogates at local scale. The results highlighted that all three types of biodiversity surrogates are complementary for assessing overall biodiversity. Because of the cost of data acquisition, we recommended that the most efficient strategy to develop nested regional/local conservation plans is to apply habitats and processes at a coarse scale of thematic resolution at regional scale, and threatened species and degraded habitats at local scale, with their fine-scale mapping limited to highly transformed areas. [source]