| |||
Bioactive Substances (bioactive + substance)
Selected AbstractsDevelopment of EuroFIR-BASIS , a composition and biological effects database for plant-based bioactive compoundsNUTRITION BULLETIN, Issue 1 2008L. Black Summary Bioactive compounds, such as those derived from plant foods, are of growing interest to the scientific community and food industry because of their putative health-promoting properties. Increasing evidence reports beneficial effects of bioactive compounds, particularly against cancers, cardiovascular diseases and diabetes. EuroFIR-BASIS (BioActive Substances in Food Information System) is a unique online database that collates international research on the composition and biological effects of plant-based bioactive compounds into a single, comprehensive reference resource. EuroFIR-BASIS covers multiple compound classes and 330 major European food plants with data sourced from quality-assessed, peer-reviewed literature. The database is internet-deployed to ensure widespread accessibility and facilitates searches against a number of different variables. EuroFIR-BASIS is intended for use by a wide audience, including scientists, researchers, epidemiologists, food regulatory authorities and product developers in the food industry. The database has been designed to accommodate continual expansion as research develops to ensure that it remains a current and useable resource. [source] Prostaglandin E2 is a negative regulator on human plasmacytoid dendritic cellsIMMUNOLOGY, Issue 1 2006Yonsu Son Summary Prostaglandin E2 (PGE2), a major lipid derived from the metabolism of arachidonic acid, is an environmentally bioactive substance produced by inflammatory processes and acts as a cAMP up-regulator that plays an important role in immune responses. It has been reported that PGE2 has the ability to inhibit the production of interleukin-12 by myeloid dendritic cells (MDCs) and macrophages, and then induce preferential T helper type 2 (Th2) cell responses. However, little is known of the function of PGE2 for plasmacytoid dendritic cells (PDCs), which may contribute to the innate and adaptive immune response to viral infection, allergy and autoimmune diseases. In the present study, we compared the biological effect of PGE2 on human PDCs and MDCs. PGE2 caused the death of PDCs but MDCs survived. Furthermore, we found that, whereas PGE2 inhibited interferon-, production by PDCs in response to virus or cytosine,phosphate,guanosine, it inhibited interelukin-12 production by MDCs in response to lipopolysaccharide (LPS) or poly(I:C). Although both virus-stimulated PDCs and LPS-stimulated MDCs preferentially induced the development of interferon-,-producing Th1 cells, pretreatment with PGE2 led both DC subsets to attenuate their Th1-inducing capacity. These findings suggest that PGE2 represents a negative regulator on not only MDCs but also PDCs. [source] The emerging role of adipocytokines as inflammatory mediators in inflammatory bowel diseaseINFLAMMATORY BOWEL DISEASES, Issue 9 2005Konstantinos Karmiris MD Abstract Anorexia, malnutrition, altered body composition and development of mesenteric obesity are well known features of inflammatory bowel disease (IBD). Recent data suggest that dysregulation of protein secretion by white adipose tissue is involved in these manifestations of patients with IBD. Adipocytes are recently recognized as endocrine cells that secrete a variety of bioactive substances known as adipocytokines. There is evidence that adipocytokines are involved in inflammatory and metabolic pathways in human beings. Overexpression of adipocytokines such as leptin, adiponectin and resistin in mesenteric adipose tissue of operated patients with Crohn's disease has recently been reported, suggesting that mesenteric adipocytes in IBD may act as immunoregulating cells. Therefore, it could be suggested that adipocytokines play an important role in the disease pathogenesis. Moreover, modulators of mesenteric adipose function have been suggested as potential therapeutic drugs in IBD. In this review, the importance of white adipose tissue function and adipocytokines, is discussed with respect to IBD. [source] Platelet lysate promotes in vitro wound scratch closure of human dermal fibroblasts: different roles of cell calcium, P38, ERK and PI3K/AKTJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 8b 2009Elia Ranzato Abstract There is a growing interest for the clinical use of platelet derivates in wound dressing. Platelet beneficial effect is attributed to the release of growth factors and other bioactive substances, though mechanisms are mostly unknown. We studied wound-healing processes of human primary fibroblasts, by exposing cells to a platelet lysate (PL) obtained from blood samples. Crystal violet and tetrazolium salt (MTS) assays showed dose,response increase of cell proliferation and metabolism. In scratch wound and transwell assays, a dose of 20% PL induced a significant increase of wound closure rate at 6 and 24 hrs, and had a strong chemotactic effect. BAPTA-AM, SB203580 and PD98059 caused 100% inhibition of PL effects, whereas wortmannin reduced to about one third the effect of PL on wound healing and abolished the chemotactic response. Confocal imaging showed the induction by PL of serial Ca2+ oscillations in fibroblasts. Data indicate that cell Ca2+ plays a fundamental role in wound healing even without PL, p38 and ERK1/2 are essential for PL effects but are also activated by wounding per se, PI3K is essential for PL effects and its downstream effector Akt is activated only in the presence of PL. In conclusion, PL stimulates fibroblast wound healing through the activation of cell proliferation and motility with different patterns of involvement of different signalling pathways. [source] ,-Monoisostearyl glyceryl ether enhances percutaneous penetration of indometacin in-vivoJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 12 2002Atsushi Suzuki ABSTRACT Molecules that reversibly remove the barrier resistance of skin enhance penetration. ,-Monoisostearyl glyceryl ether (GE-IS) is a novel compound that can be used as a non-ionic surfactant and increases percutaneous penetration of indometacin in rat abdominal skin in-vitro. The present study investigated GE-IS-induced enhancement of indometacin penetration in-vivo. When 1% GE-IS in propylene glycol was applied to rat abdominal skin, serum and muscle concentrations of indometacin increased markedly. Anti-inflammatory activities of test solutions containing both indometacin and GE-IS were investigated in experimental models of acute and chronic inflammation. Application of indometacin with GE-IS to the skin produced greater inhibitory effects on carrageenan-induced rat paw oedema, UV-induced erythema in guinea-pigs, and adjuvant arthritis in rats, compared with application of indometacin alone. The results suggest that GE-IS enhances penetration in-vivo and improves the anti-inflammatory effects of indometacin in animal models. Thus, GE-IS might contribute to the development of cosmetic or medical formulations to improve transfer of bioactive substances to hypodermal sites. [source] Pharmaceutical antibiotic compounds in soils , a reviewJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 2 2003Sören Thiele-Bruhn Antibiotics are highly effective, bioactive substances. As a result of their consumption, excretion, and persistence, they are disseminated mostly via excrements and enter the soils and other environmental compartments. Resulting residual concentrations in soils range from a few ,g upto g kg,1 and correspond to those found for pesticides. Numerous antibiotic molecules comprise of a non-polar core combined with polar functional moieties. Many antibiotics are amphiphilic or amphoteric and ionize. However, physicochemical properties vary widely among compounds from the various structural classes. Existing analytical methods for environmental samples often combine an extraction with acidic buffered solvents and the use of LC-MS for determination. In soils, adsorption of antibiotics to the organic and mineral exchange sites is mostly due to charge transfer and ion interactions and not to hydrophobic partitioning. Sorption is strongly influenced by the pH of the medium and governs the mobility and transport of the antibiotics. In particular for the strongly adsorbed antibiotics, fast leaching through soils by macropore or preferential transport facilitated by dissolved soil colloids seems to be the major transport process. Antibiotics of numerous classes are photodegraded. However, on soil surfaces this process if of minor influence. Compared to this, biotransformation yields a more effective degradation and inactivation of antibiotics. However, some metabolites still comprise of an antibiotic potency. Degradation of antibiotics is hampered by fixation to the soil matrix; persisting antibiotics were already determined in soils. Effects on soil organisms are very diverse, although all antibiotics are highly bioactive. The absence of effects might in parts be due to a lack of suitable test methods. However, dose and persistence time related effects especially on soil microorganisms are often observed that might cause shifts of the microbial community. Significant effects on soil fauna were only determined for anthelmintics. Due to the antibiotic effect, resistance in soil microorganisms can be provoked by antibiotics. Additionally, the administration of antibiotics mostly causes the formation of resistant microorganisms within the treated body. Hence, resistant microorganisms reach directly the soils with contaminated excrements. When pathogens are resistant or acquire resistance from commensal microorganisms via gene transfer, humans and animals are endangered to suffer from infections that cannot be treated with pharmacotherapy. The uptake into plants even of mobile antibiotics is small. However, effects on plant growth were determined for some species and antibiotics. Pharmazeutische Antibiotika in Böden , ein Überblick Antibiotika sind hochgradig wirksame, bioaktive Substanzen. Infolge ihrer Anwendung, Ausscheidung und Persistenz werden sie meist über die Exkremente in Böden und andere Umweltkompartimente eingetragen. Die resultierenden Rückstandskonzentrationen in Böden im Bereich von wenigen ,g bis zu g kg,1 entsprechen in etwa denen von Pflanzenschutzmitteln. Die Molekülstruktur von Antibiotika besteht häufig aus einem unpolaren Kern und polaren Randgruppen. Viele Antibiotika sind amphiphil oder amphoter und bilden Ionen, jedoch weisen die zahlreichen Antibiotika unterschiedlicher Strukturklassen stark divergierende physikochemische Eigenschaften auf. In den vorliegenden Nachweis"methoden für Umweltproben werden häufig sauer gepufferte Lösungsmittel zur Extraktion und eine Bestimmung mittels LC-MS kombiniert. Die Adsorption der Antibiotika an den organischen als auch an den mineralischen Bodenaustauschern erfolgt zumeist durch Ladungs- und Ionenwechselwirkungen und weniger durch hydrophobe Bindungen. Das Verteilungsverhalten hängt dabei entscheidend vom pH-Wert des Mediums ab und beeinflusst die Mobilität und Verlagerung der Antibiotika. Bei vielen, insbesondere stark adsorbierten Antibiotika sind v.,a. schnelle Fließvorgänge wie durch präferenziellen und Makroporenfluss sowie der Cotransport mit gelösten Bodenkolloiden von besonderer Bedeutung. Antibiotika vieler Strukturklassen können durch Licht abgebaut werden. Dieser Abbaupfad spielt auf Bodenoberflächen jedoch nur eine untergeordnete Rolle. Hingegen kommt es insbesondere durch biologische Transformationsprozesse zu einer intensiven Degradation und Inaktivierung der Antibiotika. Verschiedene Metaboliten weisen jedoch ebenfalls ein antibiotisches Potential auf. Der Abbau der Antibiotika wird durch die Festlegung in Böden gehemmt; dementsprechend wurde eine Persistenz verschiedener Antibiotika nachgewiesen. Trotz der starken bioaktiven Wirkung aller Antibiotika sind die festgestellten Effekte auf Bodenorganismen sehr unterschiedlich. Dies liegt nicht zuletzt an einem Mangel an geeigneten Testmethoden. In der Regel sind jedoch von Dosis und Wirkungsdauer abhängige Effekte insbesondere auf Mikroorganismen festzustellen, die zu Veränderungen der Mikroorganismenpopulation führen können. Lediglich durch Anthelmintika wurden deutliche Wirkungen auf Vertreter der Bodenfauna hervorgerufen. Infolge der antibiotischen Wirkung der Pharmazeutika kann eine Resistenzbildung bei Bodenorganismen ausgelöst werden. Zudem hat die Medikation von Antibiotika die Bildung resistenter Mikroorganismen bereits im behandelten Organismus zur Folge. Durch deren anschließende Ausscheidung gelangen resistente Keime auch direkt in die Böden. Handelt es sich um resistente Pathogene oder kommt es zur Übertragung der Resistenzgene zwischen kommensalen und pathogenen Mikroorganismen, so besteht das erhebliche Risiko einer nicht therapierbaren Infektion von Mensch und Tier. Die Aufnahme selbst mobiler Antibiotika in die Pflanzen ist sehr gering. Dennoch wurden bei einigen Pflanzenarten Wirkungen von Antibiotika auf das Wachstum nachgewiesen. [source] Preparation, characterization and biological activities of novel ferrocenyl-substituted azaheterocycle compoundsAPPLIED ORGANOMETALLIC CHEMISTRY, Issue 3 2003Jian-Xin Fang Abstract ,-Haloacetylferrocene and ,-triazolylacetylferrocene have been prepared from acetylferrocene and they have proved to be useful building blocks for the synthesis of ferrocenyl propenone. Two new types of ferrocenyl vinyl triazole compound, (Z,E)-ferrocenyl-[1-(1,2,4-triazol-1-yl)-2-phenyl]-vinyl-ones, have been synthesized and their structures characterized by crystal X-ray diffraction analysis. It has been shown for the first time that ferrocene, as an organometallic compound, has been introduced into bioactive triazole compounds in search of potent bioactive substances. Their biological activities are also discussed. Copyright © 2003 John Wiley & Sons, Ltd. [source] Rapid Protein Anchoring into the Membranes of Mammalian Cells Using Oleyl Chain and Poly(ethylene glycol) DerivativesBIOTECHNOLOGY PROGRESS, Issue 3 2004Koichi Kato The cell membrane is an important interface for communication with extracellular events, and incorporation of bioactive substances, such as antibodies and receptors, into the cell membrane may enhance the potential abilities of cells. Gene manipulation, chemical modification of membrane proteins, and cell surface painting using a GPI anchor have been performed to introduce substances into cell membranes. Furthermore, many lipid anchors have also been used to modify lipid membranes such as liposomes. In this study, we have focused on developing an easy and rapid method for anchoring of substances including macromolecular proteins into the membranes of living mammalian cells. We employed a single oleyl chain derivative coupled with hydrophilic poly(ethylene glycol) (PEG90, the ethyleneoxide (EO) unit is 90) to facilitate solubilization in water. This water-soluble derivative was designated Biocompatible Anchor for Membrane (BAM). Some proteins (streptavidin, EGFP and an antibody) were coupled with BAM90 at the distal terminal of PEG and rapidly (within a few minutes) anchored into the membranes of various cells (NIH3T3, 32D, Ba/F3, hybridoma 9E10). However, the anchored BAM90 disappeared from the cell membranes within 4,5 h in serum-free culture media, and moreover, the retention time of anchoring was shortened (1,2 h) in culture medium containing 10% FBS. We further prepared a dioleylphosphatidylethanolamine (DOPE)-PEG derivative (DOPE-BAM80, the EO unit is 80) as a double oleyl chain derivative for comparison with the single oleyl chain derivative, BAM90. The retention time of anchored DOPE-BAM80 was longer than that of BAM90 and more than 8 h in culture media with and without 10% serum. Furthermore, the treatment time of DOPE-BAM80 for anchoring was nearly as short (within a few minutes) as that of BAM90. In addition, both types of BAMs, BAM90 and DOPE-BAM80, showed no cytotoxicity. Therefore, DOPE-BAM80 is useful for protein anchoring to cells. Although the utilization of BAM90 is considered to be limited, it is expected to useful in restricted environments, for example, in tissues such as the cornea, peritoneum, bladder, and various mucosae, which are less exposed to serum. Thus, we suggest the possibility that both types of BAM can be applied to cell surface engineering. [source] The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1)BRITISH JOURNAL OF PHARMACOLOGY, Issue 2 2000D Smart The endogenous cannabinoid anandamide was identified as an agonist for the recombinant human VR1 (hVR1) by screening a large array of bioactive substances using a FLIPR-based calcium assay. Further electrophysiological studies showed that anandamide (10 or 100 ,M) and capsaicin (1 ,M) produced similar inward currents in hVR1 transfected, but not in parental, HEK293 cells. These currents were abolished by capsazepine (1 ,M). In the FLIPR anandamide and capsaicin were full agonists at hVR1, with pEC50 values of 5.94±0.06 (n=5) and 7.13±0.11 (n=8) respectively. The response to anandamide was inhibited by capsazepine (pKB of 7.40±0.02, n=6), but not by the cannabinoid receptor antagonists AM630 or AM281. Furthermore, pretreatment with capsaicin desensitized the anandamide-induced calcium response and vice versa. In conclusion, this study has demonstrated for the first time that anandamide acts as a full agonist at the human VR1. British Journal of Pharmacology (2000) 129, 227,230; doi:10.1038/sj.bjp.0703050 [source] |