Bile Acid Metabolism (bile + acid_metabolism)

Distribution by Scientific Domains


Selected Abstracts


Bezafibrate induces multidrug-resistance P-Glycoprotein 3 expression in cultured human hepatocytes and humanized livers of chimeric mice

HEPATOLOGY RESEARCH, Issue 7 2007
Junichi Shoda
Aim and Methods: , A decreased function of multidrug-resistance 3 P-glycoprotein (MDR3), limiting the rate of biliary phospholipid secretion, predisposes individuals to cholestasis and/or cholangitis. Fibrates induce the expression of mdr2 (homolog of human MDR3) in rodents. To investigate the effects of bezafibrate (BF) on the expression levels of MDR3 in cultured human hepatocytes and human livers, the amount of protein and subcellular localization of MDR3 was assessed in HepG2 cells treated with BF and humanized livers of BF-treated chimeric mice. Results:, In HepG2 cells, while treatment with BF did not increase the protein levels of MDR3, the treatment caused a redistribution of MDR3 in the bile canaliculi. In humanized livers of chimeric mice, oral administration of BF induced a large increase in the protein amount of MDR3 and its redistribution in the bile canaliculi. Moreover, the modulatory effects of BF on key factors involved in hepatic cholesterol and bile acid metabolism in human subjects were traced in the humanized livers of BF-treated chimeric mice. Conclusion:, BF causes an induction of MDR3 expression in human livers. This provides a rationale for the beneficial role of BF in improving cholestasis and/or cholangitis associated with defective MDR3 expression and function in various types of cholestatic hepatobiliary diseases. [source]


Elevated plasma bile acid concentrations in two sisters with tyrosinaemia type I

JOURNAL OF PAEDIATRICS AND CHILD HEALTH, Issue 1 2000
JO Sass
Abstract: A 21-month-old girl suffering from tyrosinaemia type I and undergoing treatment with 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) presented with pruritus which rapidly ceased with administration of high doses of ursodeoxycholic acid. Determination of plasma bile acids revealed clearly elevated levels both in samples taken before and after the onset of NTBC therapy, thus indicating, that the increase was not related to the administration of this drug. This result is corroborated by data from the first patient's newborn sister, diagnosed with the same disease, who showed elevated plasma bile acid concentrations in all samples examined, except for the cord plasma. This is the first report on altered bile acid concentrations in tyrosinaemia type I, and underlines the need for thorough investigation of bile acid metabolism in this disease. [source]


Analysis of bile acid-induced regulation of FXR target genes in human liver slices

LIVER INTERNATIONAL, Issue 1 2007
Diana Jung
Abstract Information about the role of nuclear receptors has rapidly increased over the last decade. However, details about their role in human are lacking. Owing to species differences, a powerful human in vitro system is needed. This study uses for the first time precision-cut human liver slices in the nuclear receptor field. The farnesoid X receptor (FXR) was chosen as a model. We were able to demonstrate that human liver slices efficiently take up bile acids and show a stable expression of a wide variety of genes relevant for bile acid metabolism, including bile acid transporters, cytochrome P450 enzymes and transcription factors. Treatment with chenodeoxycholate induced small heterodimer partner, bile salt export pump and p-glycoprotein, ABCB4 and repressed cholesterol 7, hydroxylase, hepatocyte nuclear factor (HNF)1, HNF4 and organic anion transporting peptide (OATP)1B1. OATP1B3, FXR, HNF3, and cytochrome P450 enzyme remained relatively constant. In contrast to what has been observed in mice and rat studies, SHP induction did not result in repression of sodium-dependent bile acid cotransporter expression. Further, regulation of genes seemed to be dependent on concentration and time. Taken together, the study shows that the use of liver slices is a powerful technique that enables to study nuclear receptors in the human liver. [source]


Chemical genomics: Functional analysis of orphan nuclear receptors in the regulation of bile acid metabolism

MEDICINAL RESEARCH REVIEWS, Issue 6 2001
Timothy M. Willson
Abstract Chemical genomics is the name we have given to the analysis of gene function through use of small molecule chemical tools. Orphan nuclear receptors are ideally suited to this technique of functional analysis, since their activity as transcription factors is regulated by small hydrophobic ligands. GW4064 is a potent and selective nonsteroidal ligand for the nuclear bile acid receptor FXR (NR1H4). Using GW4064 as a chemical tool, we have identified genes regulated by FXR in the liver, including those involved in bile acid synthesis and transport. We have also discovered that PXR (NR1I2) is a lithocholic acid receptor that controls the biosynthesis and metabolism of bile acids. Together FXR and PXR cooperate to control biliary and urinary bile acid excretion. These functions suggest that potent PXR and FXR ligands may offer a new approach to the treatment of cholestatic liver disease. © 2001 John Wiley & Sons, Inc. Med Res Rev, 21, No. 6, 513,522, 2001 [source]