| |||
Bilateral Injections (bilateral + injection)
Selected AbstractsEvidence for a Role of the Parafascicular Nucleus of the Thalamus in the Control of Epileptic Seizures by the Superior ColliculusEPILEPSIA, Issue 1 2005Karine Nail-Boucherie Summary:,Purpose: The aim of this study was to investigate whether the nucleus parafascicularis (Pf) of the thalamus could be a relay of the control of epileptic seizures by the superior colliculus (SC). The Pf is one of the main ascending projections of the SC, the disinhibition of which has been shown to suppress seizures in different animal models and has been proposed as the main relay of the nigral control of epilepsy. Methods: Rats with genetic absence seizures (generalized absence epilepsy rat from Strasbourg or GAERS) were used in this study. The effect of bilateral microinjection of picrotoxin, a ,-aminobutyric acid (GABA) antagonist, in the SC on the glutamate and GABA extracellular concentration within the Pf was first investigated by using microdialysis. In a second experiment, the effect of direct activation of Pf neurons on the occurrence of absence seizures was examined with microinjection of low doses of kainate, a glutamate agonist. Results: Bilateral injection of picrotoxin (33 pmol/side) in the SC suppressed spike-and-wave discharges for 20 min. This treatment resulted in an increase of glutamate but not GABA levels in the Pf during the same time course. Bilateral injection of kainate (35 pmol/side) into the Pf significantly suppressed spike-and-wave discharges for 20 min, whereas such injections were without effects when at least one site was located outside the Pf. Conclusions: These data suggest that glutamatergic projections to the Pf could be involved in the control of seizures by the SC. Disinhibition of these neurons could lead to seizure suppression and may be involved in the nigral control of epilepsy. [source] Quinolinic acid modulates the activity of src family kinases in rat striatum: in vivo and in vitro studiesJOURNAL OF NEUROCHEMISTRY, Issue 5 2006Alessio Metere Abstract Quinolinic acid (QA) has been shown to evoke neurotoxic events via NMDA receptor (NMDAR) overactivation and oxidative stress. NMDARs are particularly vulnerable to free radicals, which can modulate protein tyrosine kinase (PTK) and phosphotyrosine phosphatase (PTP) activities. The src family of tyrosine kinases are associated with the NMDAR complex and regulate NMDA channel function. Because QA is an NMDAR agonist as well as a pro-oxidant agent, we investigated whether it may affect the activity of PTKs and PTPs in vivo and in vitro. In synaptosomes prepared from striata dissected 15 min, 30 min or 15 days after bilateral injection of QA we observed modulation of the phosphotyrosine pattern; a significant decrease in PTP activity; and a sustained increase in c-src and lyn activity at 15 and 30 min after treatment with QA, followed by a decrease 2 weeks later. Striatal synaptosomes treated in vitro with QA showed time- and dose-dependent modulation of c-src and lyn kinase activities. Moreover, the nitric oxide synthase inhibitor NG -nitro- l -arginine-methyl ester, the NMDAR antagonist d -2-amino-5-phosphonovaleric acid and pyruvate suppressed the QA-induced modulation of c-src activity. These findings suggest a novel feature of QA in regulating src kinase activity through the formation of reactive radical species and/or NMDAR overactivation. [source] Involvement of NMDA and AMPA/KA receptors in the nucleus accumbens core in instrumental learning guided by reward-predictive cuesEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2005Christian Giertler Abstract The use of reward-predictive cues to guide behavior critically involves the nucleus accumbens. However, little is known regarding the role of ionotropic glutamate receptors in the core subregion of the nucleus accumbens (AcbC) in instrumental learning guided by reward-predictive cues. Here we examined the effects of an intra-AcbC blockade of NMDA and AMPA/KA receptors on the acquisition of an instrumental response in a reaction time (RT) task in rats. In this task, discriminative cues signaled in advance the upcoming reward magnitude (5 or 1 food pellet) associated with a lever release. During early acquisition (days 1,6) rats received daily bilateral injections of either the NMDA receptor antagonist AP5 (5.0 µg per side, n = 14), the AMPA/KA receptor antagonist CNQX (2.5 µg per side, n = 14) or vehicle (0.5 µL per side, n = 19). No treatment was given during late acquisition (days 7,12). The main result was that rats which received intra-AcbC injections of AP5 or CNQX during early acquisition exhibited a general RT increase of responses to high and low reward. However, treatment with AP5 and CNQX did not interfere with discriminative guidance of RTs by cue-associated reward magnitudes, i.e. during acquisition RTs of responses to expected high reward became significantly faster than RTs of responses to expected low reward. Our findings suggest that NMDA and AMPA/KA receptors in the AcbC play a critical role in invigorating responding during instrumental learning, but seem less important in guiding responding according to reward-predictive cues. [source] Activation of histaminergic H3 receptors in the rat basolateral amygdala improves expression of fear memory and enhances acetylcholine releaseEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2002Iacopo Cangioli Abstract The basolateral amygdala (BLA) is involved in learning that certain environmental cues predict threatening events. Several studies have shown that manipulation of neurotransmission within the BLA affects the expression of memory after fear conditioning. We previously demonstrated that blockade of histaminergic H3 receptors decreased spontaneous release of acetylcholine (ACh) from the BLA of freely moving rats, and impaired retention of fear memory. In the present study, we examined the effect of activating H3 receptors within the BLA on both ACh release and expression of fear memory. Using the microdialysis technique in freely moving rats, we found that the histaminergic H3 agonists R-,-methylhistamine (RAMH) and immepip, directly administered into the BLA, augmented spontaneous release of ACh in a similar manner. Levels of ACh returned to baseline on perfusion with control medium. Rats receiving intra-BLA, bilateral injections of the H3 agonists at doses similar to those enhancing ACh spontaneous release, immediately after contextual fear conditioning, showed stronger memory for the context,footshock association, as demonstrated by longer freezing assessed at retention testing performed 72 h later. Post-training, bilateral injections of 15 ng oxotremorine also had a similar effect on memory retention, supporting the involvement of the cholinergic system. Thus, our results further support a physiological role for synaptically released histamine, that in addition to affecting cholinergic transmission in the amygdala, modulates consolidation of fear memories [source] Histamine H3 receptor-mediated impairment of contextual fear conditioning and in-vivo inhibition of cholinergic transmission in the rat basolateral amygdalaEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2001M. Beatrice Passani Abstract We investigated the effects of agents acting at histamine receptors on both, spontaneous release of ACh from the basolateral amygdala (BLA) of freely moving rats, and fear conditioning. Extensive evidence suggests that the effects of histamine on cognition might be explained by the modulation of cholinergic systems. Using the microdialysis technique in freely moving rats, we demonstrated that perfusion of the BLA with histaminergic compounds modulates the spontaneous release of ACh. The addition of 100 mm KCl to the perfusion medium strongly stimulated ACh release, whereas, 0.5 µm tetrodotoxin (TTX) inhibited spontaneous ACh release by more than 50%. Histaminergic H3 antagonists (ciproxifan, clobenpropit and thioperamide), directly administered to the BLA, decreased ACh spontaneous release, an effect fully antagonized by the simultaneous perfusion of the BLA with cimetidine, an H2 antagonist. Local administration of cimetidine alone increased ACh spontaneous release slightly, but significantly. Conversely, the administration of H1 antagonists failed to alter ACh spontaneous release. Rats receiving intra-BLA, bilateral injections of the H3 antagonists at doses similar to those inhibiting ACh spontaneous release, immediately after contextual fear conditioning, showed memory consolidation impairment of contextual fear conditioning. Post-training, bilateral injections of 50 µg scopolamine also had an adverse effect on memory retention. These observations provide the first evidence that histamine receptors are involved in the modulation of cholinergic tone in the amygdala and in the consolidation of fear conditioning. [source] |