Birk Inhibitor (birk + inhibitor)

Distribution by Scientific Domains


Selected Abstracts


Changes in Drosophila melanogaster midgut proteins in response to dietary Bowman,Birk inhibitor

INSECT MOLECULAR BIOLOGY, Issue 5 2007
H.-M. Li
Abstract The midgut proteome of Drosophila melanogaster was compared in larvae fed dietary Bowman,Birk inhibitor (BBI) vs. larvae fed a control diet. By using two-dimensional gel electrophoresis, nine differentially expressed proteins were observed, which were associated with enzymes or transport functions such as sterol carrier protein X (SCPX), ubiquitin-conjugating enzyme, endopeptidase, receptor signalling protein kinase, ATP-dependent RNA helicase and ,-tocopherol transport. Quantitative real-time PCR verified differential expression of transcripts coding for six of the proteins observed from the proteomic analysis. BBI evidently affects expression of proteins associated with protein degradation, transport and fatty acid catabolism. We then tested the hypothesis that SCPX was critical for the Drosophila third instars' response to BBI treatment. Inhibition of SCPX caused the third instars to become more susceptible to dietary BBI. [source]


Induction of apoptosis in the LNCaP human prostate carcinoma cell line and prostate adenocarcinomas of SV40T antigen transgenic rats by the Bowman,Birk inhibitor

PATHOLOGY INTERNATIONAL, Issue 11 2009
MingXi Tang
The soybean-derived serine protease inhibitor, Bowman,Birk inhibitor (BBI), has been reported as a potent chemoprevention agent against several types of tumors. The present study was undertaken to evaluate the effects of BBI on androgen-sensitive/dependent prostate cancers using a human prostate cancer cell (LNCaP) and the transgenic rats developing adenocarcinoma of the prostate (TRAP) model. Treatment of LNCaP prostate cancer cells with 500 µg/mL BBI resulted in inhibition of viability measured on WST-1 assays, with induction of connexin 43 (C×43) and cleaved caspase-3 protein expression. Feeding of 3% roughly prepared BBI (BBIC) to TRAP from the age 3 weeks to 13 weeks resulted in significant reduction of the relative epithelial areas within the acinus and multiplicity of the adenocarcinomas in the lateral prostate lobes. C×43- and terminal deoxynucleotidyl transferase mediated dUTP-biotin end labeling of fragmented DNA (TUNEL)-positive apoptotic cancer cells were more frequently observed in the lateral prostates treated with BBIC than in the controls. These in vivo and in vitro results suggest that BBI possesses chemopreventive activity associated with induction of C×43 expression and apoptosis. [source]


The cytotoxic effect of Bowman,Birk isoinhibitors, IBB1 and IBBD2, from soybean (Glycine max) on HT29 human colorectal cancer cells is related to their intrinsic ability to inhibit serine proteases

MOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 3 2010
Alfonso Clemente
Abstract Bowman,Birk inhibitors (BBI) from soybean and related proteins are naturally occurring protease inhibitors with potential health-promoting properties within the gastrointestinal tract. In this work, we have investigated the effects of soybean BBI proteins on HT29 colon adenocarcinoma cells, compared with non-malignant colonic fibroblast CCD-18Co cells. Two major soybean isoinhibitors, IBB1 and IBBD2, showing considerable amino acid sequence divergence within their inhibitory domains, were purified in order to examine their functional properties, including their individual effects on the proliferation of HT29 colon cancer cells. IBB1 inhibited both trypsin and chymotrypsin whereas IBBD2 inhibited trypsin only. Despite showing significant differences in their enzyme inhibitory properties, the median inhibitory concentration values determined for IBB1 and IBBD2 on HT29 cell growth were not significantly different (39.9±2.3 and 48.3±3.5,,M, respectively). The cell cycle distribution pattern of HT29 colon cancer cells was affected by BBI treatment in a dose-dependent manner, with cells becoming blocked in the G0,G1 phase. Chemically inactive soybean BBI had a weak but non-significant effect on the proliferation of HT29 cells. The anti-proliferative properties of BBI isoinhibitors from soybean reveal that both trypsin- and chymotrypsin-like proteases involved in carcinogenesis should be considered as potential targets of BBI-like proteins. [source]