| |||
Binding Motif (binding + motif)
Kinds of Binding Motif Selected AbstractsRNA binding motif (RBM) proteins: A novel family of apoptosis modulators?JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2005Leslie C. Sutherland Abstract RBM5 is a known modulator of apoptosis, an RNA binding protein, and a putative tumor suppressor. Originally identified as LUCA-15, and subsequently as H37, it was designated "RBM" (for RNA Binding Motif) due to the presence of two RRM (RNA Recognition Motif) domains within the protein coding sequence. Recently, a number of proteins have been attributed with this same RBM designation, based on the presence of one or more RRM consensus sequences. One such protein, RBM3, was also recently found to have apoptotic modulatory capabilities. The high sequence homology at the amino acid level between RBM5, RBM6, and particularly, RBM10 suggests that they, too, may play an important role in regulating apoptosis. It is the intent of this article to ammalgamate the data on the ten originally identified RBM proteins in order to question the existence of a novel family of RNA binding apoptosis regulators. © 2004 Wiley-Liss, Inc. [source] Prospecting the Proteome: Identification of Naturally Occurring Binding Motifs for Biarsenical ProbesCHEMBIOCHEM, Issue 16 2007Ting Wang Dr. Don't be too rigid. Fluorescent biarsenical probes function by binding to peptide tags genetically engineered into a protein under study. We have found an improved, less rigid peptide tag to bind FlAsH and other xanthene-based biarsenicals. [source] Modification of Supramolecular Binding Motifs Induced By Substrate Registry: Formation of Self-Assembled Macrocycles and Chain-Like PatternsCHEMISTRY - A EUROPEAN JOURNAL, Issue 42 2009Leslie-Anne Fendt Abstract The self-assembly properties of two ZnII porphyrin isomers on Cu(111) are studied at different coverage by means of scanning tunneling microscopy (STM). Both isomers are substituted in their meso -positions by two voluminous 3,5-di(tert -butyl)phenyl and two rod-like 4,-cyanobiphenyl groups, respectively. In the trans -isomer, the two 4,-cyanobiphenyl groups are opposite to each other, whereas they are located at right angle in the cis -isomer. For coverage up to one monolayer, the cis- substituted porphyrins self-assemble to form oligomeric macrocycles held together by antiparallel CN,,,CN dipolar interactions and CN,,,H-C(sp2) hydrogen bonding. Cyclic trimers and tetramers occur most frequently but everything from cyclic dimers to hexamers can be observed. Upon annealing of the samples at temperatures >150,°C, dimeric macrocyclic structures are observed, in which the two porphyrins are bridged by Cu atoms, originating from the surface, under formation of two CN,,,Cu,,,NC coordination bonds. The trans -isomer builds up linear chains on Cu(111) at low coverage, whereas for higher coverage the molecules assemble in a periodic, densely packed structure. Both cis - and trans -bis(4,-cyanobiphenyl)-substituted ZnII porphyrins behave very differently on Cu(111) compared to similar porphyrins in literature on less reactive surfaces such as Au(111) and Ag(111). On the latter surfaces, there is no signal visible between molecular orientation and the crystal directions of the substrate, whereas on Cu(111), very strong adsorbate,substrate interactions have a dominating influence on all observed structures. This strong porphyrin,substrate interaction enables a much broader variety of structures, including also less favorable intermolecular bonding motifs and geometries. [source] CLIP-170 interacts with dynactin complex and the APC-binding protein EB1 by different mechanismsCYTOSKELETON, Issue 3 2003Holly V. Goodson Abstract CLIP-170 is a "cytoplasmic linker protein" implicated in endosome-microtubule interactions and in control of microtubule dynamics. CLIP-170 localizes dynamically to growing microtubule plus ends, colocalizing with the dynein activator dynactin and the APC-binding protein EB1. This shared "plus-end tracking" behavior suggests that CLIP-170 might interact with dynactin and/or EB1. We have used site-specific mutagenesis of CLIP-170 and a transfection/colocalization assay to address this question in mammalian tissue culture cells. Our results indicate that CLIP-170 interacts, directly or indirectly, with both dynactin and EB1. We find that the CLIP-170/dynactin interaction is mediated by the second metal binding motif of the CLIP-170 tail. In contrast, the CLIP-170/EB1 interaction requires neither metal binding motif. In addition, our experiments suggest that the CLIP-170 /dynactin interaction occurs via the shoulder/sidearm subcomplex of dynactin and can occur in the cytosol (i.e., it does not require microtubule binding). These results have implications for the targeting of both dynactin and EB1 to microtubule plus ends. Our data suggest that the CLIP-170/dynactin interaction can target dynactin complex to microtubule plus ends, although dynactin likely also targets MT plus ends directly via the microtubule binding motif of the p150Glued subunit. We find that CLIP-170 mutants alter p150Glued localization without affecting EB1, indicating that EB1 can target microtubule plus ends independently of dynactin. Cell Motil. Cytoskeleton 55:156,173, 2003. © 2003 Wiley-Liss, Inc. [source] Pyrrolidino DNA with Bases Corresponding to the 2-Oxo Deletion Mutants of Thymine and Cytosine: Synthesis and Triplex-Forming PropertiesEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 24 2007Alain Mayer Abstract The dual recognition properties of pyrrolidino DNA species as parallel triplex-forming oligonucleotides were previously found to be strongly dependent upon the nature of the pyrimidine bases. In the structure,activity study presented here we were able to exclude this differential binding being due to their 2-oxo function. We had previously reported on the incorporation of pyrrolidino C -nucleosides into triplex-forming 2,-deoxyoligonucleotides (TFOs). The basic nitrogen atom that replaces the 4,-oxygen atom of the 2,-deoxysugar in such modified units introduces a positive charge in the third strand, and this is able to produce favourable electrostatic interaction with the negatively charged DNA target duplex. A first series of pyrrolidino pseudonucleosides with the bases isocytosine and uracil proved successful for GC base-pair recognition, but was unsuccessful for AT base-pair recognition within the parallel triplex binding motif. Here we report on the synthesis of the two novel 2,-deoxypyrrolidino nucleosides carrying the bases pyridin-2-one and 2-aminopyridine, their phosphoramidite building blocks and theirincorporation into TFOs. Pyrrolidinylpyridin-2-one (dp2P) and -2-aminopyridine (dp2AP), prepared as part of a structure,activity profiling of pyrrolidino DNA in triplex binding, are deletion mutants of T and C, respectively. We found by Tm measurements that neither modification increased triplex binding efficiency relative to the iso-C- and -U-containing pyrrolidino TFOs. These experiments clearly show that the C4 carbonyl function, although important for triplex binding through indirect contributions in general, is not responsible for the differential binding of the latter two aminonucleosides and suggest that TFO conformation is more important. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source] The periplasmic peptidyl prolyl cis,trans isomerases PpiD and SurA have partially overlapping substrate specificitiesFEBS JOURNAL, Issue 13 2008Krista H. Stymest One of the rate-limiting steps in protein folding has been shown to be the cis,trans isomerization of proline residues, catalysed by a range of peptidyl prolyl cis,trans isomerases (PPIases). In the periplasmic space of Escherichia coli and other Gram-negative bacteria, two PPIases, SurA and PpiD, have been identified, which show high sequence similarity to the catalytic domain of the small PPIase parvulin. This observation raises a question regarding the biological significance of two apparently similar enzymes present in the same cellular compartment: do they interact with different substrates or do they catalyse different reactions? The substrate-binding motif of PpiD has not been characterized so far, and no biochemical data were available on how this folding catalyst recognizes and interacts with substrates. To characterize the interaction between model peptides and the periplasmic PPIase PpiD from E. coli, we employed a chemical crosslinking strategy that has been used previously to elucidate the interaction of substrates with SurA. We found that PpiD interacted with a range of model peptides independently of whether they contained proline residues or not. We further demonstrate here that PpiD and SurA interact with similar model peptides, and therefore must have partially overlapping substrate specificities. However, the binding motif of PpiD appears to be less specific than that of SurA, indicating that the two PPIases might interact with different substrates. We therefore propose that, although PpiD and SurA have partially overlapping substrate specificities, they fulfil different functions in the cell. [source] Identification of ERR, as a specific partner of PGC-1, for the activation of PDK4 gene expression in muscleFEBS JOURNAL, Issue 8 2006Makoto Araki Pyruvate dehydrogenase kinase 4 (PDK4) is a key regulatory enzyme involved in switching the energy source from glucose to fatty acids in response to physiological conditions. Transcription of the PDK4 gene is activated by fasting or by the administration of a PPAR, ligand in a tissue-specific manner. Here, we show that the two mechanisms are independent, and that ERR, is directly involved in PPAR,-independent transcriptional activation of the PDK4 gene with PGC-1, as a specific partner. This conclusion is based on the following evidence. First, detailed mutation analyses of the cloned PDK4 gene promoter sequence identified a possible ERR,-binding motif as the PGC-1, responsive element. Second, overexpression of ERR, by cotransfection enhanced, and the knockout of it by shRNAs diminished, PGC-1,-dependent activation. Third, specific binding of ERR, to the identified PGC-1, responsive sequence was confirmed by the electrophoresis mobility shift assay. Finally, cell-type-specific responsiveness to PGC-1, was observed and this could be explained by differences in the expression levels of ERR,, however, ectopic expression of ERR, in poorly responsive cells did not restore PGC-1, responsiveness, indicating that ERR, is necessary, but not sufficient for the response. [source] Novel brain 14-3-3 interacting proteins involved in neurodegenerative diseaseFEBS JOURNAL, Issue 16 2005Shaun Mackie We isolated two novel 14-3-3 binding proteins using 14-3-3 , as bait in a yeast two-hybrid screen of a human brain cDNA library. One of these encoded the C-terminus of a neural specific armadillo-repeat protein, ,-catenin (neural plakophilin-related arm-repeat protein or neurojungin). ,-Catenin from brain lysates was retained on a 14-3-3 affinity column. Mutation of serine 1072 in the human protein and serine 1094 in the equivalent site in the mouse homologue (in a consensus binding motif for 14-3-3) abolished 14-3-3 binding to ,-catenin in vitro and in transfected cells. ,-catenin binds to presenilin-1, encoded by the gene most commonly mutated in familial Alzheimer's disease. The other clone was identified as the insulin receptor tyrosine kinase substrate protein of 53 kDa (IRSp53). Human IRSp53 interacts with the gene product implicated in dentatorubral-pallidoluysian atrophy, an autosomal recessive disorder associated with glutamine repeat expansion of atrophin-1. [source] Differential effects of histone deacetylase inhibitors on phorbol ester- and TGF-,1 induced murine tissue inhibitor of metalloproteinases-1 gene expressionFEBS JOURNAL, Issue 8 2005David A. Young Expression of the tissue inhibitor of metalloproteinases-1 (Timp-1) gene can be induced by either phorbol myristate acetate (PMA) or transforming growth factor ,1 (TGF-,1), although the signalling pathways involved are not clearly defined. Canonically, histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA) or sodium butyrate (NaB) increase total cellular histone acetylation and activate expression of susceptible genes. Remarkably, PMA and TGF-,1 stimulation of Timp-1 show a differential response to TSA or NaB. TSA or NaB potentiate PMA-induced Timp-1 expression but repress TGF-,1-induced Timp-1 expression. The repression of TGF-,1-induced Timp-1 by TSA was maximal at 5 ng·mL,1, while for the superinduction of PMA-induced Timp-1 expression, the maximal dose is >,500 ng·mL,1 TSA. A further HDACi, valproic acid, did not block TGF-,1-induced Timp-1 expression, demonstrating that different HDACs impact on the induction of Timp-1. For either PMA or TGF-,1 to induce Timp-1 expression, new protein synthesis is required, and the induction of AP-1 factors closely precedes that of Timp-1. The effects of the HDACi can be reiterated in transient transfection using Timp-1 promoter constructs. Mutation or deletion of the AP-1 motif (,59/,53) in the Timp-1 promoter diminishes PMA-induction of reporter constructs, however, the further addition of TSA still superinduces the reporter. In c-Jun,/, cells, PMA still stimulates Timp-1 expression, but TSA superinduction is lost. Transfection of a series of Timp-1 promoter constructs identified three regions through which TSA superinduces PMA-induced Timp-1 and we have demonstrated specific protein binding to two of these regions which contain either an avian erythroblastosis virus E26 (v-ets) oncogene homologue (Ets) or Sp1 binding motif. [source] Study of the subunit interactions in myosin phosphatase by surface plasmon resonanceFEBS JOURNAL, Issue 6 2000Attila Tóth The interactions of the catalytic subunit of type 1 protein phosphatase (PP1c) and the N-terminal half (residues 1,511) of myosin phosphatase target subunit 1 (MYPT1) were studied. Biotinylated MYPT1 derivatives were immobilized on streptavidin-biosensor chips, and binding parameters with PP1c were determined by surface plasmon resonance (SPR). The affinity of binding of PP1c was: MYPT11,296 > MYPT11,38 > MYPT123,38. No binding was detected with MYPT11,34, suggesting a critical role for residues 35,38, i.e. the PP1c binding motif. Binding of residues 1,22 was inferred from: a higher affinity binding to PP1c for MYPT11,38 compared to MYPT123,38, as deduced from SPR kinetic data and ligand competition assays; and an activation of the myosin light chain phosphatase activity of PP1c by MYPT11,38, but not by MYPT123,38. Residues 40,296 (ankyrin repeats) in MYPT11,296 inhibited the phosphorylase phosphatase activity of PP1c (IC50 = 0.2 nm), whereas MYPT11,38, MYPT123,38 or MYPT11,34 were without effect. MYPT140,511, which alone did not bind to PP1c, showed facilitated binding to the complexes of PP1c,MYPT11,38 and PP1c,MYPT123,38. The inhibitory effect of MYPT140,511 on the phosphorylase phosphatase activity of PP1c also was increased in the presence of MYPT11,38. The binding of MYPT1304,511 to complexes of PP1c and MYPT11,38, or MYPT11,296, was detected by SPR. These results suggest that within the N-terminal half of MYPT1 there are at least four binding sites for PP1c. The essential interaction is with the PP1c-binding motif and the other interactions are facilitated in an ordered and cooperative manner. [source] Regulation of anaerobic arginine catabolism in Bacillus licheniformis by a protein of the Crp/Fnr familyFEMS MICROBIOLOGY LETTERS, Issue 2 2000Abdelouahid Maghnouj Abstract Arginine anaerobic catabolism occurs in Bacillus licheniformis through the arginine deiminase pathway, encoded by the gene cluster arcABDC. We report here the involvement of a new protein, ArcR, in the regulation of the pathway. ArcR is a protein of the Crp/Fnr family encoded by a gene located 109 bp downstream from arcC. It binds to a palindromic sequence, very similar to an Escherichia coli Crp binding site, located upstream from arcA. Residues in the C-terminal domain of Crp that form the DNA binding motif, in particular residues Arg-180 and Glu-181 that make specific bonds with DNA, are conserved in ArcR, suggesting that the complexes formed with DNA by Crp and ArcR are similar. Moreover, the pattern of DNase I hypersensitivity sites induced by the binding of ArcR suggests that ArcR bends the DNA in the same way as Crp. From the absence of anaerobic induction following inactivation of arcR and from the existence of a binding site upstream of the arcA transcription start point, it can be inferred that ArcR is an activator of the arginine deiminase pathway. [source] Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressorsFEMS MICROBIOLOGY REVIEWS, Issue 2 2006Antonio J. Molina-Henares Abstract Members of the IclR family of regulators are proteins with around 250 residues. The IclR family is best defined by a profile covering the effector binding domain. This is supported by structural data and by a number of mutants showing that effector specificity lies within a pocket in the C-terminal domain. These regulators have a helix-turn-helix DNA binding motif in the N-terminal domain and bind target promoters as dimers or as a dimer of dimers. This family comprises regulators acting as repressors, activators and proteins with a dual role. Members of the IclR family control genes whose products are involved in the glyoxylate shunt in Enterobacteriaceae, multidrug resistance, degradation of aromatics, inactivation of quorum-sensing signals, determinants of plant pathogenicity and sporulation. No clear consensus exists on the architecture of DNA binding sites for IclR activators: the MhpR binding site is formed by a 15-bp palindrome, but the binding sites of PcaU and PobR are three perfect 10-bp sequence repetitions forming an inverted and a direct repeat. IclR-type positive regulators bind their promoter DNA in the absence of effector. The mechanism of repression differs among IclR-type regulators. In most of them the binding sites of RNA polymerase and the repressor overlap, so that the repressor occludes RNA polymerase binding. In other cases the repressor binding site is distal to the RNA polymerase, so that the repressor destabilizes the open complex. [source] Identification of a novel BTB-zinc finger transcriptional repressor, CIBZ, that interacts with CtBP corepressorGENES TO CELLS, Issue 9 2005Nobuhiro Sasai The transcriptional corepressor C-terminal binding protein (CtBP) is thought to be involved in development and oncogenesis, but the regulation of its corepressor activity is largely unknown. We show here that a novel BTB-zinc finger protein, CIBZ (CtBP-interacting BTB zinc finger protein; a mouse ortholog of rat ZENON that was recently identified as an e-box/dyad binding protein), redistributes CtBP to pericentromeric foci from a diffuse nuclear localization in interphase cells. CIBZ physically associates with CtBP via a conserved CtBP binding motif, PLDLR. When heterologously targeted to DNA, CIBZ represses transcription via two independent repression domains, an N-terminal BTB domain and a PLDLR motif-containing RD2 region, in a histone deacetylase-independent and -dependent manner, respectively. Mutation in the PLDLR motif abolishes the CIBZ-CtBP interaction and transcriptional repression activity of RD2, but does not affect the repression activity of the BTB domain. Furthermore, this PLDLR-mutated CIBZ cannot target CtBP to pericentromeric foci, although it is localized to the pericentromeric foci itself. These results suggest that at least one repression mechanism mediated by CIBZ is recruitment of the CtBP/HDAC complex to pericentromeric foci, and that CIBZ may regulate pericentromeric targeting of CtBP. [source] PCNA clamp facilitates action of DNA cytosine methyltransferase 1 on hemimethylated DNAGENES TO CELLS, Issue 10 2002Tetsuo Iida Background: Proliferating cell nuclear antigen (PCNA) is a ring-shaped protein known as a processivity factor of DNA polymerase ,. In addition to this role, PCNA interacts with a number of other proteins to increase their local concentration at replicated DNA sites. DNA cytosine methyltransferase 1 (Dnmt1), which preserves epigenetic signals by completing the methylation of hemimethylated DNA after DNA replication, has been indicated as one of these PCNA binding proteins by a previous work. However, the molecular mechanisms and functional significance of their association have not yet been studied. Results: Dnmt1 can be readily isolated from nuclear extracts by PCNA affinity chromatography. Studies of the interactions between the two proteins demonstrate that the N-terminal region of Dnmt1, which contains a typical PCNA binding motif, has core PCNA binding activity, and that the remaining portion of the protein exerts a negative influence on the interaction of Dnmt1 with PCNA. The affinity of Dnmt1 for DNA is much higher for DNA bound by PCNA than for free DNA. Furthermore, DNA methylation assays with hemimethylated DNA as a substrate revealed that PCNA clamp-bound DNA is methylated more efficiently by Dnmt1 than is free DNA. Conclusion: These results provide the first biochemical evidence that physical interactions between PCNA and Dnmt1 facilitate the methylation of newly neplicated DNA, on which PCNA remains associated as a functional clamp. [source] A role of the C-terminus of aquaporin 4 in its membrane expression in cultured astrocytesGENES TO CELLS, Issue 7 2002Ken-ichi Nakahama Background: Aquaporin 4 (AQP4) is a predominant water channel protein in mammalian brains, which is localized in the astrocyte plasma membrane. Membrane targeting of AQP4 is essential to perform its function. The mechanism(s) of membrane targeting is not clear in astrocytes. Results: We investigated the role of the C-terminus of AQP4 (short isoform) in its membrane targeting by an expression study of C-terminal mutants of AQP4 in cultured astrocytes. The deletion of 26 C-terminal residues of AQP4 (AQP4,276,301aa) results in the intracellular localization of the protein. However, smaller deletions than 21 C-terminal residues did not alter its plasma membrane localization. These results suggest that C-terminal residues between Val276 and Ile280 play an important role in the expression of AQP4 in the plasma membrane. However, the plasma membrane localization of the AQP4(A276AAAA280) mutant (alanine substitution of Val276 -Ile280 of AQP4) suggests that another signal for membrane targeting exists in the C-terminus of AQP4. The deletion or point mutations of the PDZ binding motif of the AQP4(A276AAAA280) mutant resulted in the intracellular localization of the proteins. These results suggest that the PDZ binding motif may also be involved in the membrane targeting of AQP4. Conclusions: We found that the C-terminal sequence of AQP4 contains two important signals for membrane expression of AQP4 in cultured astrocytes. One is a hydrophobic domain and the other is a PDZ binding motif that exists in the C-terminus. [source] Mis3 with a conserved RNA binding motif is essential for ribosome biogenesis and implicated in the start of cell growth and S phase checkpointGENES TO CELLS, Issue 7 2000Hiroshi Kondoh Background In normal somatic cell cycle, growth and cell cycle are properly coupled. Although CDK (cyclin-dependent kinase) activity is known to be essential for cell cycle control, the mechanism to ensure the coupling has been little understood. Results We here show that fission yeast Mis3, a novel evolutionarily highly conserved protein with the RNA-interacting KH motif, is essential for ribosome RNA processing, and implicated in initiating the cell growth. Growth arrest of mis3-224, a temperature sensitive mutant at the restrictive temperature, coincides with the early G2 block in the complete medium or the G1/S block in the release from nitrogen starvation, reflecting coupling of cell growth and division. Genetic interactions indicated that Mis3 shares functions with cell cycle regulators and RNA processing proteins, and is under the control of Dsk1 kinase and PP1 phosphatase. Mis3 is needed for the formation of 18S ribosome RNA, and may hence direct the level of proteins required for the coupling. One such candidate is Mik1 kinase. mis3-224 is sensitive to hydroxyurea, and the level of Mik1 protein increases during replication checkpoint in a manner dependent upon the presence of Mis3 and Cds1. Conclusions Mis3 is essential for ribosome biogenesis, supports S phase checkpoint, and is needed for the coupling between growth and cell cycle. Whether Mis3 interacts solely with ribosomal precursor RNA remains to be determined. [source] Deletion of the PDZ motif of HPV16 E6 preventing immortalization and anchorage-independent growth in human tonsil epithelial cellsHEAD & NECK: JOURNAL FOR THE SCIENCES & SPECIALTIES OF THE HEAD AND NECK, Issue 2 2008William C. Spanos MD Abstract Background Human papillomavirus 16 (HPV16) has been associated with head and neck squamous cell carcinoma (HNSCC) in up to 60% of sampled specimens. Methods To understand better the viral genes required to transform human tonsil epithelial cells (HTEC), we isolated HTEC's and transduced them with retroviral vectors containing HPV16 E6 and E7. Results Immortalization and anchorage-independent growth of HTEC's only occurred with expression of E6 and E7 with resultant degradation of p53. However, cells expressing E6 lacking the PSD-95/disc-large/Zo-1 (PDZ) motif did not immortalize or grow anchorage independent. Telomerase activity and degradation of p53 were similar for wild-type and mutant E6. Conclusion The mechanism of oncogenic transformation by E6 in HTEC's is dependent on the PDZ binding motif. Identification of pathways affected by the interaction of E6 and PDZ domain containing proteins will further our understanding of how HPV causes HNSCC and will provide potential therapeutic targets. © 2007 Wiley Periodicals, Inc. Head Neck, 2008 [source] MHC Class II epitope predictive algorithmsIMMUNOLOGY, Issue 3 2010Morten Nielsen Summary Major histocompatibility complex class II (MHC-II) molecules sample peptides from the extracellular space, allowing the immune system to detect the presence of foreign microbes from this compartment. To be able to predict the immune response to given pathogens, a number of methods have been developed to predict peptide,MHC binding. However, few methods other than the pioneering TEPITOPE/ProPred method have been developed for MHC-II. Despite recent progress in method development, the predictive performance for MHC-II remains significantly lower than what can be obtained for MHC-I. One reason for this is that the MHC-II molecule is open at both ends allowing binding of peptides extending out of the groove. The binding core of MHC-II-bound peptides is therefore not known a priori and the binding motif is hence not readily discernible. Recent progress has been obtained by including the flanking residues in the predictions. All attempts to make ab initio predictions based on protein structure have failed to reach predictive performances similar to those that can be obtained by data-driven methods. Thousands of different MHC-II alleles exist in humans. Recently developed pan-specific methods have been able to make reasonably accurate predictions for alleles that were not included in the training data. These methods can be used to define supertypes (clusters) of MHC-II alleles where alleles within each supertype have similar binding specificities. Furthermore, the pan-specific methods have been used to make a graphical atlas such as the MHCMotifviewer, which allows for visual comparison of specificities of different alleles. [source] Transcriptional signatures in response to wheat germ agglutinin and starvation in Drosophila melanogaster larval midgutINSECT MOLECULAR BIOLOGY, Issue 1 2009H.-M. Li Abstract One function of plant lectins such as wheat germ agglutinin is to serve as defences against herbivorous insects. The midgut is one critical site affected by dietary lectins. We observed marked cellular, structural and gene expression changes in the midguts of Drosophila melanogaster third instar larvae that were fed wheat germ agglutinin. Some of these changes were similar to those observed in the midguts of starved D. melanogaster. Dietary wheat germ agglutinin caused shortening, branching, swelling, distortion and in some cases disintegration of the midgut microvilli. Starvation was accompanied primarily by shortening of the microvilli. Microarray analyses revealed that dietary wheat germ agglutinin evoked differential expression of 61 transcripts; seven of these were also differentially expressed in starved D. melanogaster. The differentially transcribed gene clusters in wheat germ agglutinin-fed larvae were associated with (1) cytoskeleton organization; (2) digestive enzymes; (3) detoxification reactions; and (4) energy metabolism. Four possible transcription factor binding motifs were associated with the differentially expressed genes. One of these exhibited substantial similarity to MyoD, a transcription factor binding motif associated with cellular structures in mammals. These results are consistent with the hypothesis that wheat germ agglutinin caused a starvation-like effect and structural changes of midgut cells of D. melanogaster third-instar larvae. [source] Characterization of Phosphatase and Tensin Homolog expression in the mosquito Aedes aegypti: Six splice variants with developmental and tissue specificityINSECT MOLECULAR BIOLOGY, Issue 3 2007Michael A. Riehle Abstract Phosphatase and tensin homologue (PTEN), an inhibitor of insulin signalling, was characterized in Aedes aegypti. Surprisingly, six splice variants were identified: three with alternative terminal exons (AaegPTEN2 : 3 : 6) and three formed by intron retention (AaegPTEN1 : 4 : 5). All variants encoded active phosphatase domains. Variants with alternative terminal exons also encoded C2 and COOH-domains, and AaegPTEN6 encoded a PDZ binding motif. These three variants also had unique expression patterns. AaegPTEN2 was expressed primarily in the ovary. AaegPTEN3 was predominant in heads and midguts, and throughout development, except early embryogenesis. AaegPTEN6 was expressed in fat body, ovaries, and throughout development. Intron retention variants were weakly expressed in most samples. These expression patterns suggest that AaegPTEN variants play unique roles in regulating insulin's pleiotropic effects. [source] Identification of a novel gene, Mblk-1, that encodes a putative transcription factor expressed preferentially in the large-type Kenyon cells of the honeybee brainINSECT MOLECULAR BIOLOGY, Issue 5 2001Hideaki Takeuchi Abstract Mushroom bodies (MBs) are considered to be involved in higher-order sensory processing in the insect brain. To identify the genes involved in the intrinsic function of the honeybee MBs, we searched for genes preferentially expressed therein, using the differential display method. Here we report a novel gene encoding a putative transcription factor (Mblk-1) expressed preferentially in one of two types of intrinsic MB neurones, the large-type Kenyon cells, which makes Mblk-1 a candidate gene involved in the advanced behaviours of honeybees. A putative DNA binding motif of Mblk-1 had significant sequence homology with those encoded by genes from various animal species, suggesting that the functions of these proteins in neural cells are conserved among the animal kingdom. [source] An interaction between opticin and heparan sulfate may provide the molecular basis for vitreoretinal adhesionINTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 4 2004V. John Hindson Introduction Opticin is a member of the extracellular matrix small leucine-rich repeat (SLRP) proteoglycan/protein family, which was originally identified in the eye associated with the collagen fibrils of the vitreous humour. A putative heparin/heparan sulfate (HS) binding motif (RKERKRR) was identified at the N-terminus of human opticin, but this is absent in the bovine form. Furthermore, the strength of attachment between the vitreous and the retina was observed to be species-dependent and related to the presence or absence of this motif. We hypothesized that opticin cross-links the collagen fibrils of the vitreous to HS proteoglycans in the inner limiting lamina (a basement membrane on the inner surface of the retina), contributing towards vitreoretinal adhesion. Materials and methods Recombinant human and bovine opticin were expressed in 293-EBNA cells and purified to apparent homogeneity. Solid phase assays and surface plasmon resonance studies were used to characterize interactions between immobilized heparin/HS and opticin. Results Solid phase and BIAcore data revealed that human opticin binds heparin/HS and binds to heparin with a dissociation constant of approximately 20 nm. By contrast bovine opticin, which lacks the basic cluster, bound severalfold less tightly. Competition studies with heparin oligosaccharides indicated that the heparin/HS binding site is greater than 6 monosaccharides in length. Heparin, HS, chondroitin sulfate A (CS-A), dermatan sulfate and hyaluronan all competed with heparin for binding to human opticin but CS-C did not. Discussion Work to date suggests that the N-terminal sequence RKERKRR contributes significantly to the binding of opticin to heparin/HS. Vitreoretinal adhesion plays a key role in a number of eye diseases and inhibitors of the opticin,HS interaction could be of therapeutic value. [source] Functional and structural properties of stannin: Roles in cellular growth, selective toxicity, and mitochondrial responses to injuryJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2006M.L. Billingsley Abstract Stannin (Snn) was discovered using subtractive hybridization methodology designed to find gene products related to selective organotin toxicity and apoptosis. The cDNAs for Snn were first isolated from brain tissues sensitive to trimethyltin, and were subsequently used to localize, characterize, and identify genomic DNA, and other gene products of Snn. Snn is a highly conserved, 88 amino acid protein found primarily in vertebrates. There is a minor divergence in the C-terminal sequence between amphibians and primates, but a nearly complete conservation of the first 60 residues in all vertebrates sequenced to date. Snn is a membrane-bound protein and is localized, in part, to the mitochondria and other vesicular organelles, suggesting that both localization and conservation are significant for the overall function of the protein. The structure of Snn in a micellar environment and its architecture in lipid bilayers have been determined using a combination of solution and solid-state NMR, respectively. Snn structure comprised a single transmembrane domain (residues 10,33), a 28-residue linker region from residues 34,60 that contains a conserved CXC metal binding motif and a putative 14-3-3, binding region, and a cytoplasmic helix (residues 61,79), which is partially embedded into the membrane. Of primary interest is understanding how this highly-conserved peptide with an interesting structure and cellular localization transmits both normal and potentially toxic signals within the cell. Evidence to date suggests that organotins such as trimethyltin interact with the CXC region of Snn, which is vicinal to the putative 14-3-3 binding site. In vitro transfection analyses and microarray experiments have inferred a possible role of Snn in several key signaling systems, including activation of the p38-ERK cascade, p53-dependent pathways, and 14-3-3, protein-mediated processes. TNF, can induce Snn mRNA expression in endothelial cells in a PKC-, dependent manner. Studies with Snn siRNA suggest that this protein may be involved in growth regulation, since inhibition of Snn expression alone leads to reduced endothelial cells growth and induction of COP-1, a negative regulator of p53 function. A key piece of the puzzle, however, is how and why such a highly-conserved protein, localized to mitochondria, interacts with other regulatory proteins to alter growth and apoptosis. By knowing the structure, location, and possible signaling pathways involved, we propose that Snn constitutes an important sensor of mitochondrial damage, and plays a key role in the mediation of cross-talk between mitochondrial and nuclear compartments in specific cell types. J. Cell. Biochem. 98: 243,250, 2006. © 2006 Wiley-Liss, Inc. [source] RNA binding motif (RBM) proteins: A novel family of apoptosis modulators?JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2005Leslie C. Sutherland Abstract RBM5 is a known modulator of apoptosis, an RNA binding protein, and a putative tumor suppressor. Originally identified as LUCA-15, and subsequently as H37, it was designated "RBM" (for RNA Binding Motif) due to the presence of two RRM (RNA Recognition Motif) domains within the protein coding sequence. Recently, a number of proteins have been attributed with this same RBM designation, based on the presence of one or more RRM consensus sequences. One such protein, RBM3, was also recently found to have apoptotic modulatory capabilities. The high sequence homology at the amino acid level between RBM5, RBM6, and particularly, RBM10 suggests that they, too, may play an important role in regulating apoptosis. It is the intent of this article to ammalgamate the data on the ten originally identified RBM proteins in order to question the existence of a novel family of RNA binding apoptosis regulators. © 2004 Wiley-Liss, Inc. [source] Neural cell adhesion molecule stimulates survival of premyelinating oligodendrocytes via the fibroblast growth factor receptorJOURNAL OF NEUROSCIENCE RESEARCH, Issue 15 2009Anne L. Palser Abstract Axonal signals are critical in promoting the survival and maturation of oligodendrocytes during myelination, with contact-dependent signals thought to play a key role. However, the exact nature of these signals remains unclear. Neural cell adhesion molecule (NCAM) is expressed by both axons and oligodendrocytes and is ideally localized to transduce signals from the axon. This study sought to investigate the influence of NCAM on premyelinating oligodendrocytes in vitro. Both a soluble molecule comprising the extracellular domain of NCAM and a peptide derived from the fibroblast growth factor receptor (FGFR) binding motif within the first fibronectin domain stimulated a dose-dependent increase in survival of premyelinating oligodendrocytes in vitro. The survival effect was blocked by a mitogen-activated protein kinase (MAPK) inhibitor and an FGFR inhibitor, suggesting that activation of MAPK signalling pathways following interaction with the FGFR is involved in the survival effect of NCAM. Furthermore, NCAM presented in a cellular monolayer induced an increase in radial process outgrowth of oligodendrocyte progenitor cells. These data suggest that NCAM may play a role in axon,oligodendrocyte signalling during myelination, leading to an increase in oligodendrocyte survival and process outgrowth following axonal contact. © 2009 Wiley-Liss, Inc. [source] Unphosphorylated CsgD controls biofilm formation in Salmonella enterica serovar TyphimuriumMOLECULAR MICROBIOLOGY, Issue 3 2010Katherina Zakikhany Summary The transcriptional regulator CsgD of Salmonella enterica serovar Typhimurium (S. Typhimurium) is a major regulator of biofilm formation required for the expression of csgBA, which encodes curli fimbriae, and adrA, coding for a diguanylate cyclase. CsgD is a response regulator with an N-terminal receiver domain with a conserved aspartate (D59) as a putative target site for phosphorylation and a C-terminal LuxR-like helix,turn,helix DNA binding motif, but the mechanisms of target gene activation remained unclear. To study the DNA-binding properties of CsgD we used electrophoretic mobility shift assays and DNase I footprint analysis to show that unphosphorylated CsgD-His6 binds specifically to the csgBA and adrA promoter regions. In vitro transcription analysis revealed that CsgD-His6 is crucial for the expression of csgBA and adrA. CsgD-His6 is phosphorylated by acetyl phosphate in vitro, which decreases its DNA-binding properties. The functional impact of D59 in vivo was demonstrated as S. Typhimurium strains expressing modified CsgD protein (D59E and D59N) were dramatically reduced in biofilm formation due to decreased protein stability and DNA-binding properties in the case of D59E. In summary, our findings suggest that the response regulator CsgD functions in its unphosphorylated form under the conditions of biofilm formation investigated in this study. [source] Substrate specificity of three cytochrome c haem lyase isoenzymes from Wolinella succinogenes: unconventional haem c binding motifs are not sufficient for haem c attachment by NrfI and CcsA1MOLECULAR MICROBIOLOGY, Issue 1 2010Melanie Kern Summary Bacterial c -type cytochrome maturation is dependent on a complex enzymic machinery. The key reaction is catalysed by cytochrome c haem lyase (CCHL) that usually forms two thioether bonds to attach haem b to the cysteine residues of a haem c binding motif (HBM) which is, in most cases, a CX2CH sequence. Here, the HBM specificity of three distinct CCHL isoenzymes (NrfI, CcsA1 and CcsA2) from the Epsilonproteobacterium Wolinella succinogenes was investigated using either W. succinogenes or Escherichia coli as host organism. Several reporter c -type cytochromes were employed including cytochrome c nitrite reductases (NrfA) from E. coli and Campylobacter jejuni that differ in their active-site HBMs (CX2CK or CX2CH). W. succinogenes CcsA2 was found to attach haem to standard CX2CH motifs in various cytochromes whereas other HBMs were not recognized. NrfI was able to attach haem c to the active-site CX2CK motif of both W. succinogenes and E. coli NrfA, but not to NrfA from C. jejuni. Different apo-cytochrome variants carrying the CX15CH motif, assumed to be recognized by CcsA1 during maturation of the octahaem cytochrome MccA, were not processed by CcsA1 in either W. succinogenes or E. coli. It is concluded that the dedicated CCHLs NrfI and CcsA1 attach haem to non-standard HBMs only in the presence of further, as yet uncharacterized structural features. Interestingly, it proved impossible to delete the ccsA2 gene from the W. succinogenes genome, a finding that is discussed in the light of the available genomic, proteomic and functional data on W. succinogenes c -type cytochromes. [source] Roles of CmpR, a LysR family transcriptional regulator, in acclimation of the cyanobacterium Synechococcus sp. strain PCC 7942 to low-CO2 and high-light conditionsMOLECULAR MICROBIOLOGY, Issue 3 2004Yukari Takahashi Summary The cmp operon of Synechococcus sp. strain PCC 7942, encoding a high-affinity bicarbonate transporter, is induced under low CO2 conditions by a LysR family protein CmpR. CmpR was found to be required also for induction of the operon by transfer of the cells from low-light to high-light conditions, indicating involvement of a common mechanism in the high-light- and low-CO2 -responsive regulation. Expression of the high-light inducible genes psbAII and psbAIII, on the other hand, was found to be induced also by low-CO2 conditions. A single promoter was responsible for the high-light and low-CO2 induction of each of psbAII and psbAIII, suggesting involvement of a common regulatory mechanism in the light and CO2 responses of the psbA genes. CmpR was, however, not required for the induction of psbAII and psbAIII, indicating the presence of multiple mechanisms for induction of genes under high-light and low-CO2 conditions. The CmpR-deficient mutant nevertheless showed lower levels of the psbAII and psbAIII transcripts than the wild-type strain under all the light and CO2 conditions examined. Gel shift assays showed that CmpR binds to the enhancer elements of psbAII and psbAIII, through specific interaction with a sequence signature conforming to the binding motif of similar LysR family proteins. These findings showed that CmpR acts as a trans -acting factor that enhances transcription of the photosystem II genes involved in acclimation to high light, revealing a complex network of gene regulation in the cyanobacterium. [source] Identification of the peptide motifs that interact with HLA-DR8 (DRB1*0802) in Streptococcus mutans proteinsMOLECULAR ORAL MICROBIOLOGY, Issue 4 2002Y. Nomura A glucosyltransferase (GTF) and a surface protein antigen (PAc) of Streptococcus mutans have been suggested as possible components of an effective dental caries vaccine. To identify antigenic peptides in GTF and PAc that bind to MHC class II (HLA-DR8, DRB1*0802) molecules, we investigated binding activities to DR8 molecules of overlapping synthetic peptides at several sites in GTF and in the alanine-rich repeating region of PAc using an ELISA-inhibition competitive binding assay for the interaction between the HLA-DR molecule and the PAc (316,334) peptide. Six GTF peptides and 10 PAc peptides strongly bound to the HLA-DR8 molecule. In a homology analysis of the amino acid sequences of the six GTF peptides, two binding motifs were found in L/Y, ,Y/L,A/N and Y/L, ,N/G/E, ,Y,V/L/P. Moreover, a new binding motif in PAc was found in L- ,Y-A. It is suggested that these binding motifs could be useful in designing a dental caries vaccine in humans. [source] Affinity of corpora amylacea for oligonucleotides: Sequence dependency and proteinaceous binding motifNEUROPATHOLOGY, Issue 4 2006Ioan A. Balea Corpora amylacea (CA) have an affinity to nucleic acids as shown by in situ hybridization experiments. However, little is known about the specificity of this interaction, as well as the mechanism involved. We investigated the ability of different probes of digoxigenin-labeled oligonucleotides corresponding to some specific neuronal receptors, both sense and antisense, to bind to CA from human autopsy brain tissue. The bound nucleotides were detected with antidigoxigenin antibody and the signal was further amplified using the tyramide signal amplification system. The affinity of binding varies with the sequence of nucleotides. The most intense signal is produced by the adenosine-2A receptor antisense probe and the least intense signal is produced by the N-methyl-D-aspartate receptor sense probe. The affinity of binding for the same probe does not depend on the localization of CA in the central nervous system. Complete staining loss by proteinase K pretreatment in higher concentrations shows that the binding motif is partially proteinaceous. The circumferential but not the punctate internal staining is diminished by mild amylglucosidase pretreatment, suggesting a process of progressive apposition and condensation. [source] |