| |||
Binding Constants (binding + constant)
Kinds of Binding Constants Selected AbstractsBinding of bioactive phytochemical piperine with human serum albumin: A spectrofluorometric studyBIOPOLYMERS, Issue 4 2007Dodda Venkatanna Suresh Abstract Piperine, the bioactive alkaloid compound of the spice black pepper (Piper nigrum) exhibits a wide range of beneficial physiological and pharmacological activities. Being essentially water-insoluble, piperine is presumed to be assisted by serum albumin for its transport in blood. In this study, the binding of piperine to serum albumin was examined by employing steady state and time resolved fluorescence techniques. Binding constant for the interaction of piperine with human serum albumin, which was invariant with temperature in the range of 17,47°C, was found to be 0.5 × 105M,1, having stoichiometry of 1:1. At 27°C, the van't Hoff enthalpy ,H° was zero; ,S° and ,G° were found to be 21.4 cal mol,1 K,1 and ,6.42 kcal mol,1. The binding constant increased with the increase of ionic strength from 0.1 to 1.0M of sodium chloride. The decrease of Stern,Volmer constant with increase of temperature suggested that the fluorescence quenching is static. Piperine fluorescence showed a blue shift upon binding to serum albumin, which reverted with the addition of ligands ,triiodobenzoic acid and hemin. The distance between piperine and tryptophan after binding was found to be 2.79 nm by Förster type resonance energy transfer calculations. The steady state and time resolved fluorescence measurements suggest the binding of piperine to the subdomain IB of serum albumin. These observations are significant in understanding the transport of piperine in blood under physiological conditions. © 2007 Wiley Periodicals, Inc. Biopolymers 86: 265,275, 2007. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source] Determination of the binding constants of modafinil enantiomers with sulfated ,-cyclodextrin chiral selector by capillary electrophoresis using three different linear plotting methodsELECTROPHORESIS, Issue 17 2010Khaldun M. Al Azzam Abstract Binding constants for the enantiomers of modafinil with the negatively charged chiral selector sulfated-,-CD (S-,-CD) using CE technique is presented. The calculations of the binding constants employing three different linearization plots (double reciprocal, X -reciprocal and Y -reciprocal) were performed from the electrophoretic mobility values of modafinil enantiomers at different concentrations of S-,-CD in the BGE. The highest inclusion affinity of the modafinil enantiomers were observed for the S -enantiomer,S-,-CD complex, in agreement with the computational calculations performed previously. Binding constants for each enantiomer,S-,-CD complex at different temperatures, as well as thermodynamic parameters for binding, were calculated. Host,guest binding constants using the double reciprocal fit showed better linearity (r2>0.99) at all temperatures studied (15,30°C) and compared with the other two fit methods. The linear van't Hoff (15,30°C) plot obtained indicated that the thermodynamic parameters of complexation were temperature dependent for the enantiomers. [source] Competition among zinc, manganese, and cadmium uptake in the freshwater alga Scenedesmus vacuolatusENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2007Stefanie Töpperwien Abstract In the present study, Zn and Mn competition with Cd uptake was investigated in the freshwater alga Scenedesmus vacuolatus. Scenedesmus vacuolatus was exposed to experimental media with Cd and either Zn or Mn in short-term experiments; long-term experiments were undertaken to investigate the effect of growth on Cd accumulation. Cadmium accumulation in S. vacuolatus could be detected at very low exposure concentrations (free Cd2+, 2 × 10,14 to 1 × 10,11 M), and uptake was proportional to the free-Cd2+ concentration. Zinc was an effective competitive inhibitor of Cd uptake when the Zn2+ to Cd2+ ratio was greater than 14 in the exposure medium, whereas Mn competed with Cd for uptake above a Mn2+ to Cd2+ ratio of greater than 10,000. Binding constants for Cd and Zn affinity to the transport sites were determined (KZn and KCd). Values for KZn were slightly higher (log K = 9.4,9.8) than values for KCd (log K = 8.9,9.8). In contrast, Cd seemed not to compete with the Mn-binding sites for uptake over the Mn concentration range from 1 × 10,10 to 1 × 10,8 M. Determined values for the binding constants of Zn and Cd show that a simple model can be applied to predict Cd uptake at known Zn and Cd concentrations. The environmental implications of these results are discussed with respect to potential Cd toxicity for aquatic organisms. [source] Pseudorotaxanes and Rotaxanes Formed by Viologen DerivativesEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 8 2006Adam B. Braunschweig Abstract Dibenzyl-4,4,-bipyridinium (BIPY2+) bis(hexafluorophosphate) and three of its derivatives , disubstituted at the para positions of the benzyl groups with CO2Me, F, and Me in turn , have been shown to form 1:1 complexes that are [2]pseudorotaxanes with dibenzo[24]crown-8 (DB24C8), benzometaphenylene[25]crown-8 (BMP25C8), and dipyrido[24]crown-8 (DP24C8) in CD3CN solution by 1H NMR spectroscopy and in one case in the solid state by X-ray crystallography. Binding constants (Ka) for all of these 1:1 complexes, which were determined both (1) by isothermal titration calorimetry in MeCN solution and (2) by the 1H NMR spectroscopic single-point method in CD3CN solution, were found to be, on the average, an order of magnitude less than the Ka values obtained for DB24C8 and DP24C8 with dibenzylammonium (DBA+) hexafluorophosphate and three of its derivatives, also disubstituted at the para positions of the benzyl groups with CO2Me, F and Me. In the case of BMP25C8, however, the Ka values with both categories (BIPY2+ and DBA+) of guests are much of a muchness, being both small and error prone. The equilibrium thermodynamics for these small libraries of [2]pseudorotaxanes indicate that the best bistable [2]rotaxanes incorporating both DBA+ and BIPY2+ recognition sites are going to involve ester functions in their dumbbell components and will employ DP24C8 or, failing that, DB24C8 as the ring component. The BIPY2+threads also directed the templated assembly of [2]rotaxanes incorporating the crown ethers (DB24C8, DP24C8, and BMP25C8) and triphenylphosphonium stoppers using the threading followed by stoppering approach. The rotaxanes were characterized in solution by 1H NMR spectroscopy, and in one case, in the solid state by X-ray crystallography.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source] Interactions of cyclosporines with lipid membranes as studied by solid-state nuclear magnetic resonance spectroscopy and high-sensitivity titration calorimetryJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 3 2002Uwe Schote Abstract Cyclosporin A (CyA) interacts with lipid membranes. Binding reaction and membrane location of CyA and analogs were examined with 2H-NMR, high-sensitivity isothermal titration calorimetry (ITC), and CD spectroscopy. Effects of CyA and charged analogs on the phosphocholine head group and on the membrane interior were investigated using selectively deuterated phospholipids. Incorporation of cyclosporin generated small disordering of the lipid acyl chains. Binding of CyA and neutral and positively charged analogs to lipid membranes showed endothermic heats of reaction between +,5.9 and +,11.3 kcal/mol, whereas enthalpy of binding was close to zero for the negatively charged derivative. Binding constants of cyclosporines to liposomal membranes were in the range of KP,=,1650,5560 M,,1 depending on the cholesterol content. 2H-NMR provides evidence that CyA is essentially located in the interior of the bilayer membrane. For the charged analogs an additional interaction occurs at the head group level, placing the polar groups of these CyA analogs in the vicinity of the phosphocholine dipoles. The association of CyA and its analogs is accompanied by a positive enthalpy change, which is overcompensated by positive entropy changes. Binding of CyA to lipid membranes thus follows the classical hydrophobic effect, which is in contrast to many other peptide-lipid binding reactions. © 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91: 856,867, 2002 [source] Binding of olive oil phenolics to food proteinsJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 3 2005Are Hugo Pripp Abstract In this paper we investigate the interaction of phenolics extracted from olive oil with different food proteins (sodium caseinate, bovine serum albumin, ,-lactoglobulin and gelatin). Binding parameters are estimated using different experimental techniques: gel filtration, HPLC, isothermal titration calorimetry and NMR diffusion measurements. For comparison, the binding properties of gallic acid and tannic acid are also studied. The affinity of olive oil phenolics for the different food proteins is found to be relatively weak (compared with tannic acid). Binding constants are measured for the different phenolics in the extract: tyrosol and hydroxytyrosol do not (or very weakly) bind to the proteins, whereas other phenolics in the extract had binding constants of the order 102,104M,1. The binding parameters determined have been discussed in relation to the possible effect of proteins on sensory properties (bitterness) of food emulsions containing olive oil. Copyright © 2004 Society of Chemical Industry [source] Proline-40 is Essential to Maintaining Cytochrome b5, s Stability and Its Electron Transfer with Cytochrome cCHINESE JOURNAL OF CHEMISTRY, Issue 11 2002Zhi-Qian Wang Abstract In order to illustrate the roles played by Pro40 in the structure, properties and functions of Cytochrome b5, three mutated genes, P40V, P40Y, P40G were constructed in this work. Only the P40V gene was successfully expressed into holoprotein in E. coli JM83. According to the results of X-ray crystallographic analysis and various kinds of spectroscopy studies, it is evident that substituting valine for Pro40 does not result in significant alterations in the protein,s overall structure; however, local conformational perturbations in the proximity of the heme do occur. The redox potential of the P40V mutant is 40 mV lower than that of the wild type protein. Its stability towards heat, urea, acid and ethanol were significantly decreased. The mutation leads to a decrease in the hydrophobicity of the heme pocket, which is probably the major factor contributing to the above changes. Binding constants and electron transfer rates between cytochrome bs and cytochrome c were determined using UV-visible spectroscopy and stopped-flow techniques for both the wild type and the mutant. The results showed that the substitution of Pro40 by valine does not influence the binding constant of cytochrome b5 to cytochrome c; however, the electron transfer rate between them decreased significantly. This indicates that proline-40 is essential to maintaining cytochrome bss stability and its electron transfer with cytochrome c. These studies also provided a good example that property and functional changes of a protein do not necessarily require large overall structural alterations; in most cases, only perturbations on the local conformations are sufficient to induce significant changes in protein,s properties and functions. [source] Electrophoretic behaviors of human hepatoma HepG2 cellsELECTROPHORESIS, Issue 9 2009Jyh-Ping Hsu Abstract The electrophoretic mobility of HepG2 cells was measured and a charge-regulated model was proposed to simulate the results obtained. Here, a cell was simulated by a rigid core and an ion-penetrable membrane layer containing both acidic and basic functional groups. The influences of the key parameters, including the pH, the ionic strength, the thickness of the membrane layer of a cell, the density and the dissociation constant of the dissociable functional groups in the membrane layer, and the binding constant of divalent cations on the electrophoretic mobility of a cell were investigated. In particular, the role of the buffer used in the experiment was discussed; this effect was neglected in almost all the relevant theoretical analyses in the literature. We showed that the binding ability of divalent cations to the dissociated functional groups in the membrane layer of a cell ranks as Ca2+>Mg2+>hexamethonium. [source] Study on the enhancement of Ru(bpy)32+ electrochemiluminescence by nanogold and its application for pentoxyverine detectionELECTROPHORESIS, Issue 23 2005Yingju Liu Abstract In this work, CE separation with end-column Ru(bpy)32+ ECL detection for the quantitative determination of pentoxyverine was firstly performed. The experimental conditions, such as the applied potential, injection voltage, injection time, and the pH of separation buffer, were discussed in detail. Gold nanoparticles were found to enhance the ECL intensity at an appropriate volume ratio of nanogold with Ru(bpy)32+ but without changing their nanoproperties proved by transmission electron microscopy (TEM) and UV-vis spectra. The detection limits with or without nanogold were 6,nM and 0.6,,M, respectively. Successful separation of pentoxyverine, chlorpheniramine, and lidocaine was achieved. This method was also applied to monitor drug binding with HSA, and the binding constant for pentoxyverine was estimated as 1.8×103/M. [source] Flow-through partial-filling affinity capillary electrophoresis can estimate binding constants of neutral ligands to receptors via a competitive assay techniqueELECTROPHORESIS, Issue 6 2003John Kaddis Abstract This work evaluates the use of a competitive binding assay using flow-through partial-filling affinity capillary electrophoresis (FTPFACE) to estimate binding constants of neutral ligands to a receptor. We demonstrate this technique using, as a model system, carbonic anhydrase B (CAB, EC 4.2.1.1) and arylsulfonamides. In this technique, the capillary is first partially filled with a negatively charged ligand, a sample containing CAB and two noninteracting standards, and a neutral ligand, then electrophoresed. Upon application of a voltage the sample plug migrates into the plug of negatively charged ligand (L,) resulting in the formation of a CAB-L, complex. Continued electrophoresis results in mixing between the neutral ligand (L0) and the CAB-L, complex. L0 successfully competes out L, to form the new CAB-L0 complex. Analysis of the change in the relative migration time ratio (RMTR) of CAB relative to the noninteracting standards, as a function of neutral ligand concentration, yields a value for the binding constant. These values are in agreement with those estimated using other binding and ACE techniques. Data demonstrating the quantitative potential of this method is presented. [source] Analysis of the variable charge of two organic soils by means of the NICA-Donnan modelEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 6 2007B. Vasiliadis Summary We have tested to see if the generic set of NICA-Donnan model parameters, used to describe isolated humic substances, can also describe soil humic substances in situ. A potentiometric back-titration technique was used to determine the variable surface charge of two organic peat soils at three different ionic strengths. The non-ideal, competitive-adsorption NICA-Donnan model was used to simulate the surface charge, by assuming a bimodal distribution of H+ affinity on the soil solid phase. The model provided an excellent fit to the experimental data. The Donnan volume, VD, varied slightly with ionic strength, although the variation was less than for humic substances in solution. The values obtained for the parameters that define the affinity distributions, the intrinsic proton binding constant (log Kiint) and the heterogeneity of the site (mi), were similar to those observed for isolated soil humic acids. The abundance of carboxylic groups in the whole soil represented 30% of the typical value for isolated soil humic acids. The composition of the organic matter of the whole soils, obtained by 13C CPMAS NMR, was comparable to the characteristic composition of soil humic acids. [source] Structure,activity relationships of wheat flavone O -methyltransferase , a homodimer of convenienceFEBS JOURNAL, Issue 9 2008Jack A. Kornblatt Wheat flavone O -methyltransferase catalyzes three sequential methylations of the flavone tricetin. Like other flavonoid O -methyltransferases, the protein is a homodimer. We demonstrate, using analytical ultracentrifugation, that perchlorate dissociates the dimer into monomers. The resulting monomers retain all their catalytic capacity, including the ability to catalyze the three successive methylations. We show, using isothermal titration calorimetry, that the binding constant for S -adenosyl- l -methionine does not change significantly as the protein dissociates. The second substrate, tricetin, binds to the dimers but could not be tested with the monomers. CD, UV and fluorescence spectroscopy show that there are substantial changes in the structure of the protein as it dissociates. The fact that there are differences between the monomers and dimers even as the monomers maintain activity may be the result of the very low catalytic capacity of this enzyme. Maximal turnover numbers for the dimers and monomers are only about 6,7 per minute. Even though the binding pockets for S -adenosyl- l -methionine, tricetin, selgin and tricin are intact, selection of a catalytically competent structure may be a very slow step during catalysis. [source] Structural consequences of site-directed mutagenesis in flexible protein domainsFEBS JOURNAL, Issue 8 200156)S mutant of RhoGDI, NMR characterization of the L(5 The guanine dissociation inhibitor RhoGDI consists of a folded C-terminal domain and a highly flexible N-terminal region, both of which are essential for biological activity, that is, inhibition of GDP dissociation from Rho GTPases, and regulation of their partitioning between membrane and cytosol. It was shown previously that the double mutation L55S/L56S in the flexible region of RhoGDI drastically decreases its affinity for Rac1. In the present work we study the effect of this double mutation on the conformational and dynamic properties of RhoGDI, and describe the weak interaction of the mutant with Rac1 using chemical shift mapping. We show that the helical content of the region 45,56 of RhoGDI is greatly reduced upon mutation, thus increasing the entropic penalty for the immobilization of the helix, and contributing to the loss of binding. In contrast to wild-type RhoGDI, no interaction with Rac1 could be identified for amino-acid residues of the flexible domain of the mutant RhoGDI and only very weak binding was observed for the folded domain of the mutant. The origins of the effect of the L55S/L56S mutation on the binding constant (decreased by at least three orders of magnitude relative to wild-type) are discussed with particular reference to the flexibility of this part of the protein. [source] Photoluminescence Detection of Biomolecules by Antibody-Functionalized Diatom BiosilicaADVANCED FUNCTIONAL MATERIALS, Issue 6 2009Debra K. Gale Abstract Diatoms are single-celled algae that make microscale silica shells called "frustules", which possess intricate nanoscale features imbedded within periodic two-dimensional pore arrays. In this study, antibody-functionalized diatom biosilica frustules serve as a microscale biosensor platform for selective and label-free photoluminescence (PL)-based detection of immunocomplex formation. The model antibody rabbit immunoglobulin G (IgG) is covalently attached to the frustule biosilica of the disk-shaped, 10-µm diatom Cyclotella sp. by silanol amination and crosslinking steps to a surface site density of 3948,±,499 IgG molecules µm,2. Functionalization of the diatom biosilica with the nucleophilic IgG antibody amplifies the intrinsic blue PL of diatom biosilica by a factor of six. Furthermore, immunocomplex formation with the complimentary antigen anti-rabbit IgG further increases the peak PL intensity by at least a factor of three, whereas a non-complimentary antigen (goat anti-human IgG) does not. The nucleophilic immunocomplex increases the PL intensity by donating electrons to non-radiative defect sites on the photoluminescent diatom biosilica, thereby decreasing non-radiative electron decay and increasing radiative emission. This unique enhancement in PL emission is correlated to the antigen (goat anti-rabbit IgG) concentration, where immunocomplex binding follows a Langmuir isotherm with binding constant of 2.8,±,0.7,×,10,7M. [source] Effects of alcohols on micellization and on the reaction methyl 4-nitrobenzenesulfonate + Br, in cetyltrimethylammonium bromide aqueous micellar solutionsINTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 12 2004María Muñoz The effects of n -hexanol, n -pentanol, and n -butanol on the critical micelle concentration (cmc), on the micellar ionization degree (,), and on the rate of the reaction methyl 4-nitrobenzenesulfonate + Br, have been investigated in cetyltrimethylammonium bromide (CTAB) aqueous solutions. An increase in the alcohol concentration present in the solution produces a decrease in the cmc and an increase in the micellar ionization degree. Kinetic data show that the observed rate constant decreases as alcohol concentration increases. This result was rationalized by considering variations in the equilibrium binding constant of the methyl 4-nitrobenzenesulfonate molecules to the micelles, variations in the interfacial bromide ion concentration, and variations in the characteristics of the water,alcohol bulk phase provoked by the presence of alcohols. When these operative factors are considered, kinetic data in this and other works show that the second-order rate constants in the micellar pseudophases of water,alcohol micellar solutions are quite similar to those estimated in the absence of alcohols. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 634,641, 2004 [source] Spectral, kinetic, and redox properties of basic fuchsin in homogeneous aqueous and sodium dodecyl sulfate micellar mediaINTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 12 2003N. Ramanathan Effect of anionic surfactant on the optical absorption spectra and redox reaction of basic fuchsin, a cationic dye, has been studied. Increase in the absorbance of the dye band at 546 nm with sodium dodecyl sulfate (SDS) is assigned to the incorporation of the dye in the surfactant micelles with critical micellar concentration (CMC) of 7.3 × 10,3 mol dm,3. At low surfactant concentration (<5 × 10,3 mol dm,3) decrease in the absorbance of the dye band at 546 nm is attributed to the formation of a dye,surfactant complex (1:1). The environment, in terms of dielectric constant, experienced by basic fuchsin inside the surfactant micelles has been estimated. The association constant (KA) for the formation of dye,SDS complex and the binding constant (KB) for the micellization of dye are determined. Stopped-flow studies, in the premicellar region, indicated simultaneous depletion of dye absorption and formation of new band at 490 nm with a distinct isosbestic point at 520 nm and the rate constant for this region increased with increasing SDS concentration. The reaction of hydrated electron with the dye and the decay of the semireduced dye are observed to be slowed down in the presence of SDS. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 629,636, 2003 [source] An empirical approach to study the occurrence of ion exchange in the ionic micellar-mediated semi-ionic reactions: Kinetics of the rate of reaction of piperidine with ionized phenyl salicylate in the presence of cationic micellesINTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 5 2001M. Niyaz Khan Pseudo-first-order rate constants (kobs),obtained for the cleavage of ionized phenyl salicylate (PS,) at constant [NaOH], [MeCN], [CTAZ]T (total concentration of cetyltrimethylammonium chloride and bromide), [Pip]T (total concentration of piperidine), and varying concentrations of sodium cinnamate, acetate, and butanoate ([NaX]),follow the relationship: kobs = (k0 + , K[NaX])/(1 + K[NaX]), where , and K are empirical parameters. The values of , are almost independent of [CTAZ]T, while K values decrease with the increase in [CTAZ]T within its range 0.006,0.020 M. The values of , and K are explained in terms of pseudophase model of micelle coupled with an empirical relationship: KS = KS0/(1 + ,X/S [NaX]), where KS is the CTAZ micellar binding constant of PS, in the presence of NaX. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 288,294, 2001 [source] Can the calculation of ligand binding free energies be improved with continuum solvent electrostatics and an ideal-gas entropy correction?JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 12 2002Sonja M. Schwarzl Abstract The prediction of a ligand binding constant requires generating three-dimensional structures of the complex concerned and reliably scoring these structures. Here, the scoring problem is investigated by examining benzamidine-like inhibitors of trypsin, a system for which errors in the structures are small. Precise and consistent binding free energies for the inhibitors are determined experimentally for this test system. To examine possible improvement of scoring methods, we test the suitability of continuum electrostatics to account for solvation effects and use an ideal-gas entropy correction to account for the changes in the degrees of freedom of the ligand. The small observed root-mean-square deviation of 0.55 kcal/mol of the calculated relative to the experimental values indicates that the essentials of the binding process have been captured. Even though all six ligands make the same salt bridge and H-bonds to the protein, the electrostatic contribution varies among the ligands by as much as 2 kcal/mol. Moreover, although the ligands are rigid and similar in size, the entropic terms also significantly affect the relative binding affinities (by up to 2.7 kcal/mol). The present approach to solvation and entropy may allow the ranking of the ligands to be considerably improved at a cost that makes the method applicable to the optimization of lead compounds or to the screening of small collections of ligands. © 2002 Wiley Periodicals, Inc. J Comput Chem 23: 1143,1149, 2002 [source] Effects of salts on protein,surface interactions: applications for column chromatographyJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 7 2007Kouhei Tsumoto Abstract Development of protein pharmaceuticals depends on the availability of high quality proteins. Various column chromatographies are used to purify proteins and characterize the purity and properties of the proteins. Most column chromatographies require salts, whether inorganic or organic, for binding, elution or simply better recovery and resolution. The salts modulate affinity of the proteins for particular columns and nonspecific protein,protein or protein,surface interactions, depending on the type and concentration of the salts, in both specific and nonspecific manners. Salts also affect the binding capacity of the column, which determines the size of the column to be used. Binding capacity, whether equilibrium or dynamic (under an approximation of a slow flow rate), depends on the binding constant, protein concentration and the number of the binding site on the column as well as nonspecific binding. This review attempts to summarize the mechanism of the salt effects on binding affinity and capacity for various column chromatographies and on nonspecific protein,protein or protein,surface interactions. Understanding such salt effects should also be useful in preventing nonspecific protein binding to various containers. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 96: 1677,1690, 2007 [source] Determination of the binding constant between alprostadil and alpha-cyclodextrin by capillary electrophoresis: Implications for a freeze-dried formulationJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 7 2005Benjamin R. Schipper Abstract The binding constant between alprostadil (PGE1) and ,-cyclodextrin (,-CD) was determined at three temperatures by capillary electrophoresis. ,-CD is an excipient material in Caverject Dual Chamber Syringe (DCS), added to enhance stability. The binding constant was used to calculate the amount of PGE1 free upon reconstitution and injection, the latter of which is critical to product performance. Measurement was made in a pH 7.2 separation buffer to ensure a negative charge on PGE1. The concentration of PGE1 was fixed while the concentration of ,-CD was varied over a suitable range. As the amount of PGE1 bound to ,-CD increases, the weighted average of the resultant mobility decreases, thereby allowing a binding isotherm to be generated from which the stability constant was extracted via nonlinear regression analysis. A value of 708,±,64 M,1 was obtained at 27°C, while at physiological temperature (37°C) the value was 537,±,27 M,1. These results compare favorably to values previously obtained by NMR. Calculation of the percent PGE1 free upon reconstitution and injection show it to be near the desired outcome of 100%. Hence, we were able to conclude that the amount of free drug delivered by Caverject DCS is nominally the same as for Caverject S. Po., an earlier-developed product that contains no ,-CD. © 2005 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 94:1528,1537, 2005 [source] Metallosupramolecular approach toward functional coordination polymersJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 21 2005Rainer Dobrawa Abstract An appropriate definition of metallosupramolecular coordination polymer is offered, and the relationship between the polymer length, binding constant, and concentration is clarified. The possibility of influencing the binding constant with chelating ligands is discussed on the basis of examples of different Zn2+ complexes and their respective binding constants. In the main part, coordination polymers constructed by a supramolecular approach from different metal ions and pyridine,ligand systems are highlighted, and their applications as functional materials for artificial membrane and enzyme models, responsive gels, light-harvesting systems, and organic light-emitting diodes are discussed on the basis of individual examples. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4981,4995, 2005 [source] Binding of Warfarin Influences the Acid-Base Equilibrium of H242 in Sudlow Site I of Human Serum AlbuminPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 5 2006Jennifer L. Perry ABSTRACT Sudlow Site I of human serum albumin (HSA) is located in subdomain IIA of the protein and serves as a binding cavity for a variety of ligands. In this study, the binding of warfarin (W) is examined using computational techniques and isothermal titration calorimetry (ITC). The structure of the docked warfarin anion (W,) to Site I is similar to that revealed by X-ray crystallography, with a calculated binding constant of 5.8 × 105M,1. ITC experiments (pH 7.13 and I = 0.1) carried out in three different buffers (MOPs, phosphate and Tris) reveal binding of W, is accompanied by uptake of 0.30 ± 0.02 protons from the solvent. This measurement suggests that the binding of W, is stabilized by an ion-pair interaction between protonated H242 and the phenoxide group of W,. [source] Thermal denaturation pathway of starch phosphorylase from Corynebacterium callunae: Oxyanion binding provides the glue that efficiently stabilizes the dimer structure of the proteinPROTEIN SCIENCE, Issue 6 2000Richard GrießLer Abstract Starch phosphorylase from Corynebacterium callunae is a dimeric protein in which each mol of 90 kDa subunit contains 1 mol pyridoxal 5,-phosphate as an active-site cofactor. To determine the mechanism by which phosphate or sulfate ions bring about a greater than 500-fold stabilization against irreversible inactivation at elevated temperatures (,50°C), enzyme/oxyanion interactions and their role during thermal denaturation of phosphorylase have been studied. By binding to a protein site distinguishable from the catalytic site with dissociation constants of Ksulfate = 4.5 mM and Kphosphate,16 mM, dianionic oxyanions induce formation of a more compact structure of phosphorylase, manifested by (a) an increase by about 5% in the relative composition of the ,-helical secondary structure, (b) reduced 1H/2H exchange, and (c) protection of a cofactor fluorescence against quenching by iodide. Irreversible loss of enzyme activity is triggered by the release into solution of pyridoxal 5,-phosphate, and results from subsequent intermolecular aggregation driven by hydrophobic interactions between phosphorylase subunits that display a temperature-dependent degree of melting of secondary structure. By specifically increasing the stability of the dimer structure of phosphorylase (probably due to tightened intersubunit contacts), phosphate, and sulfate, this indirectly (1) preserves a functional active site up to, 50°C, and (2) stabilizes the covalent protein cofactor linkage up to , 70°C. The effect on thermostability shows a sigmoidal and saturatable dependence on the concentration of phosphate, with an apparent binding constant at 50°C of , 25 mM. The extra stability conferred by oxyanion-ligand binding to starch phosphorylase is expressed as a dramatic shift of the entire denaturation pathway to a , 20°C higher value on the temperature scale. [source] Synthesis of 2-Fluoro N10 -Substituted Acridones and Their Cytotoxicity Studies in Sensitive and Resistant Cancer Cell Lines and Their DNA Intercalation StudiesARCHIV DER PHARMAZIE, Issue 11 2009Yergeri C. Mayur Abstract A series of 2-fluoro N10 -substituted acridone derivatives with varying alkyl side chain length with propyl, butyl substitution, and a tertiary amine group at the terminal end of the alkyl side chain were synthesized and screened against cancer cell lines SW 1573, SW 1573 2R 160 (P-gp substrate) which are non-small lung cancer cell lines, MCF-7, MCF-7/MR (BCRP substrate) are breast cancer cell lines, 2008 WT, 2008MRP1, 2008MRP2, 2008MRP3 are ovarian cancer cell lines, and human embryo kidney cell lines like HEK293, HEK293 MRP4, and HEK293 MRP5i. The propyl-series compounds showed lipophilicity in the range of 1.93 to 4.40 and the butyl series in the range of 2.37 to 4.78. The compounds 4, 7, and 8 showed good cytotoxicity against the 60 human cancer cell line panel of the National Cancer Institute, USA. The compounds 14 and 15 showed a better cytotoxicity in most of the cancer cell lines compared to other compounds tested. The DNA-binding properties of the compounds were evaluated based on their affinity or intercalation with CT-DNA measured with absorption titration. The compound 11 bearing planar tricyclic ring linked with a butyl methylpiperazino side chain showed the highest binding affinity with a binding constant (Ki) of 10.38×10 M,1. Evaluation of the compounds in cell lines with an overexpression of various multidrug resistance-related protein (MRP), P-glycoprotein (P-gp), or Breast Cancer Resistance Protein (BCRP) showed that all compounds are not substrates for any of these transporters. [source] Soluble neuropilin-2, a nerve repellent receptor, is increased in rheumatoid arthritis synovium and aggravates sympathetic fiber repulsion and arthritisARTHRITIS & RHEUMATISM, Issue 10 2009Alexander Fassold Objective In inflammatory lesions, sympathetic nerve fibers disappear soon after the start of inflammation. We identified sympathetic nerve repellents as possible causal agents in rheumatoid arthritis (RA). On nerve terminals, repellent factors bind to neuropilin-2 and its coreceptor. The aim of this study was to investigate the role of neuropilin-2 in the synovial tissue of patients with RA and patients with osteoarthritis (OA) and in experimental arthritis. Methods The density of neuropilin-2,positive fibers and cells positive for semaphorin 3F (a sympathetic repellent) was investigated using immunofluorescence staining. Enzyme-linked immunosorbent assay was used to detect soluble neuropilin-2 in body fluids from patients with RA and patients with OA. An axon outgrowth assay and a neuropilin-2 Fc fusion construct (neuropilin-2Fc) were used to investigate semaphorin 3F,induced sympathetic nerve repulsion. In an animal model of type II collagen,induced arthritis, soluble neuropilin-2Fc was studied in vivo. Results The synovial density of neuropilin-2,positive sympathetic nerve fibers was lower in RA than in OA, but the density of cells positive for semaphorin 3F was similar. In synovial fluid, the level of soluble neuropilin-2 was markedly higher in RA compared with OA. Mouse sympathetic ganglia served as an excellent model with which to study semaphorin 3F,induced nerve fiber repulsion. Neuropilin-2 and its coreceptor were present on sympathetic neurons, and semaphorin 3F bound to neuropilin-2Fc (binding constant 96 nmoles/liter). Semaphorin 3F dose-dependently increased sympathetic nerve fiber repulsion (at a 50% maximum response concentration of 160,210 nmoles/liter). In contrast to our expectations, soluble neuropilin-2Fc did not inhibit repulsion but increased the repellent effect of semaphorin 3F. In experimental arthritis, therapy with neuropilin-2Fc aggravated arthritis. Conclusion Soluble neuropilin-2 has no antirepellent activity but aggravates sympathetic nerve fiber repulsion and arthritis. Increased shedding of neuropilin-2 is probably an unfavorable sign in RA. [source] Thermodynamic Considerations in Solid Adsorption of Bound Solutes for Patient Support in Liver FailureARTIFICIAL ORGANS, Issue 7 2008John F. Patzer II Abstract:, New detoxification modes of treatment for liver failure that use solid adsorbents to remove toxins bound to albumin in the patient bloodstream are entering clinical evaluations, frequently in head-to-head competition. While generally effective in reducing toxin concentration beyond that obtainable by conventional dialysis procedures, the solid adsorbent processes are largely the result of heuristic development. Understanding the principles and limitations inherent in competitive toxin binding, albumin versus solid adsorbent, will enhance the design process and, possibly, improve detoxification performance. An equilibrium thermodynamic analysis is presented for both the molecular adsorbent recirculating system (MARS) and fractionated plasma separation, adsorption, and dialysis system (Prometheus), two advanced systems with distinctly different operating modes but with similar equilibrium limitations. The Prometheus analysis also applies to two newer approaches: sorbent suspension reactor and microsphere-based detoxification system. Primary results from the thermodynamic analysis are that: (i) the solute,albumin binding constant is of minor importance to equilibrium once it exceeds about 105 L/mol; (ii) the Prometheus approach requires larger solid adsorbent columns than calculated by adsorbent solute capacity alone; and (iii) the albumin-containing recycle stream in the MARS approach is a major reservoir of removed toxin. A survey of published results indicates that MARS is operating under mass transfer control dictated by solute,albumin equilibrium in the recycle stream, and Prometheus is approaching equilibrium limits under current clinical protocols. [source] Structure-assisted discovery of an aminothiazole derivative as a lead molecule for inhibition of bacterial fatty-acid synthesisACTA CRYSTALLOGRAPHICA SECTION D, Issue 12 2007Günter Pappenberger Fatty-acid synthesis in bacteria is of great interest as a target for the discovery of antibacterial compounds. The addition of a new acetyl moiety to the growing fatty-acid chain, an essential step in this process, is catalyzed by ,-ketoacyl-ACP synthase (KAS). It is inhibited by natural antibiotics such as cerulenin and thiolactomycin; however, these lack the requirements for optimal drug development. Structure-based biophysical screening revealed a novel synthetic small molecule, 2-phenylamino-4-methyl-5-acetylthiazole, that binds to Escherichia coli KAS I with a binding constant of 25,µM as determined by fluorescence titration. A 1.35,Å crystal structure of its complex with its target reveals noncovalent interactions with the active-site Cys163 and hydrophobic residues of the fatty-acid binding pocket. The active site is accessible through an open conformation of the Phe392 side chain and no conformational changes are induced at the active site upon ligand binding. This represents a novel binding mode that differs from thiolactomycin or cerulenin interaction. The structural information on the protein,ligand interaction offers strategies for further optimization of this low-molecular-weight compound. [source] Study of nobiletin binding to bovine serum albumin by capillary electrophoresis,frontal analysis and circular dichroismBIOMEDICAL CHROMATOGRAPHY, Issue 9 2010Lian Yi Abstract A very recent epidemiological study provided strong support for nobiletin (NOB) as a potential candidate chemopreventive agent against cancer. From the pharmacology point of view, drug,protein interactions are determining factors in therapeutic, pharmacodynamic and toxicological drug properties. In this work, for the first time, detection of NOB at near-physiological conditions was accomplished by means of capillary electrophoresis,frontal analysis (CE-FA), and then the binding constants of NOB with bovine serum albumin (BSA) at the same conditions were determined. Complexation of NOB,BSA led to a decrease of the height for free NOB with increasing concentration of BSA. These results revealed the presence of a single class of binding site on BSA, and provided the binding constant of 103/m, showing the strong affinity of NOB for BSA. Furthermore, circular dichroism spectra showed that, when the molar ratio of NOB to BSA was up to 2:1, NOB did not affect the overall protein conformation significantly and the protein thus retained a native-like structure. These results may provide important information for preclinical studies of nobiletin in pharmaceutical research. Copyright © 2010 John Wiley & Sons, Ltd. [source] Does the ligand-biopolymer equilibrium binding constant depend on the number of bound ligands?,BIOPOLYMERS, Issue 11 2010Daria A. Beshnova Abstract Conventional methods, such as Scatchard or McGhee-von Hippel analyses, used to treat ligand-biopolymer interactions, indirectly make the assumption that the microscopic binding constant is independent of the number of ligands, i, already bound to the biopolymer. Recent results on the aggregation of aromatic molecules (Beshnova et al., J Chem Phys 2009, 130, 165105) indicated that the equilibrium constant of self-association depends intrinsically on the number of molecules in an aggregate due to loss of translational and rotational degrees of freedom on formation of the complex. The influence of these factors on the equilibrium binding constant for ligand-biopolymer complexation was analyzed in this work. It was shown that under the conditions of binding of "small" molecules, these factors can effectively be ignored and, hence, do not provide any hidden systematic error in such widely-used approaches, such as the Scatchard or McGhee-von Hippel methods for analyzing ligand-biopolymer complexation. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 932,935, 2010. [source] Revisiting the neighbor exclusion model and its applicationsBIOPOLYMERS, Issue 1 2010Marcio S. Rocha Abstract We review the neighbor exclusion model and some of its applications to analyze the binding data of DNA-ligand complexes. We revisit the closed form of the model developed by McGhee and von Hippel in 1974, showing that this classic model can be used to help studying the behavior of DNA contour and persistence lengths when interacting with intercalating ligands. We present methods to quantitatively analyze the variation of these two quantities, allowing one to determine important parameters of the interaction such as the intrinsic binding constant and the exclusion number of the ligand. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 1,7, 2010. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source] |