Biconical Antenna (biconical + antenna)

Distribution by Scientific Domains


Selected Abstracts


The computation of the input impedance of a biconical antenna by means of a method of segmentation based on 3D finite elements

INTERNATIONAL JOURNAL OF NUMERICAL MODELLING: ELECTRONIC NETWORKS, DEVICES AND FIELDS, Issue 5 2003
José Ma Gil
Abstract The analysis of structures with complex geometries leads to the use of three-dimensional numerical methods. Such devices can be unmanageable unless a segmentation technique is applied. In this work, a hybrid 3D finite-element-mode matching method, based on the generalized admittance matrix (GAM) is applied to the computation of the input impedance of a biconical antenna fed by a cylindrical cavity loaded with resonant slots and matched by a coupling network composed of three multi-ridge circular irises and sections of circular waveguides. The structure is segmented into regions which are analysed separately and, by means of linking the partial matrices calculated, the generalized scattering matrix (GSM) is obtained. In order to validate the method, numerical results and measurements are compared. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Compact top-loaded ultra-wideband biconical antenna for indoor base-station applications

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 11 2010
W. J. Lu
Abstract A biconical antenna employing the top-loaded technique is proposed for ultra-band (UWB) operation. The antenna is composed of a small cone mounted on a top-loaded disc and a conical ground plane, with both cones electrically connected together using four shorting pins to reduce the lower cutoff frequency. The antenna is investigated using computer simulation and measurement. Results show that the antenna has an impedance bandwidth from 0.8 GHz to over 11.2 GHz, dipole-like omnidirectional radiation pattern, average gain of about 4.2 dBi, and average radiation efficiency of over 88%. The antenna has the advantageous features of compact size, low profile, simple structure, and ultra-wideband characteristic and so is suitable for indoor base-station applications of many existing and future wireless and UWB systems. © 2010 Wiley Periodicals, Inc. Microwave Opt Technol Lett 52:2594,2598, 2010; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.25540 [source]